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QCD under extreme conditions

▶ High temperatures
▶ Large baryon density
▶ Intense magnetic fields
▶ Strong acceleration (up to a ∼ 1 GeV)

talk of Jayanta Dey
▶ Relativistic rotation 2



Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

▶ Ω = (PΛ + PΛ̄)
kBT
ℏ (Phys. Rev. C 95, 054902 (2017))

▶ Ω ∼ 10 MeV (v ∼ c at distances 10-20 fm, ∼ 1022 s−1)
▶ Relativistic rotation of QGP

How relativistic rotation influences QCD?
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Quantum Chromodynamics(QCD)

▶ Degrees of freedom
▶ Quarks q
▶ Gluons A

▶ The QCD Lagrangian is well known

L = −1

4

8∑
a=1

Fµν
a F a

µν +
∑

f=u,d,s,...

q̄f (iγ
µ∂µ−m)qf +g

Nf∑
f=1

q̄fγ
µÂµqf

▶ Non-linear equations of motion with g ∼ 1

▶ The main problem: calculation of observables based on the QCD
Lagrangian

▶ Theoretical approaches contain assumptions with systematic
errors which are difficult to estimate
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Building lattice QCD

▶ Introduce regular cubic four dimensional lattice
Ns ×Ns ×Ns ×Nt = N3

s ×Nt

▶ Lattice spacing–a
▶ Degrees of freedom

▶ Gluon fields: 3x3 matrices U ∈ SU(3), live on links
▶ Quarks fields: column q, q̄, live on sites
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Lattice QCD

▶ QCD partition function (thermodynamic equilibrium!)

Z =
∫
DUDψDψ̄ exp

(
−SG − SQ

)
=

∫
DUe−Seff (U)

▶ Hybrid Monte Carlo simulations
(generation of gluon configurations with weight ∼ e−Seff (U) )

▶ In continuum lattice partition function exactly reproduces QCD
partition function
▶ Gluon contribution: SG

∣∣
a→0

= − 1
4

∑8
a=1 F

µν
a F a

µν

▶ Quark contribution: SQ

∣∣
a→0

= q̄(γµ∂µ + igγµAµ +m)q

▶ Carry out continuum extrapolation a→ 0

▶ Uncertainties (discretization and finite volume effects) can be
systematically reduced

▶ The first principles based approach. No assumptions!

▶ Parameters: coupling constant g(a) and masses of quarks mq(a)

▶ The millennium problem can be solved for one hour
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Phase transitions in QCD

▶ Confinement/deconfinement transtion
▶ Chiral symmetry breaking/restoration transition
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Confinement/deconfinement transition in QCD

▶ Order parameter Polyakov line:
P (x⃗) = ⟨TrP exp (ig

∫ T
0 dx4Â4(x⃗, x4))⟩

P = e−FQ/T

▶ Confinement: FQ = ∞ ⇒ P = 0

▶ Deconfinement: FQ < ∞ ⇒ P ̸= 0

▶ Z3 symmetry of gluodynamics
but P → e2πk/3iP, k = 0, 1, 2

▶ P is similar to magnetization in
ferromagnetic

▶ First order phase transition in SU(3)
gluodynamics

▶ Quarks violate Z3 symmetry
▶ Confinement/deconfinement is crossover

Tc = (176± 5) MeV
Z. Fodor, Phys.Lett.B 643 (2006)
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Lattice studies of rotating QCD

▶ The first lattice study
A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013)

▶ Critical temperature of gluodynamics
V. Braguta, A. Kotov, D. Kuznedelev, A. Roenko, JETP Lett. 112 (2020) 1, 6
V. Braguta, A. Kotov, D. Kuznedelev, A. Roenko, Phys.Rev.D 103 (2021) 9, 094515

▶ Critical temperatures in QCD
V. Braguta, A. Kotov, A. Roenko, D. Sychev, PoS LATTICE2022 (2023) 190
Ji-Chong Yang, Xu-Guang Huang, e-Print: 2307.05755

▶ Equation of state and moment of inertia
talks of Egor Eremeev and Dmitrii Sychev

V. Braguta, M. Chernodub, A. Roenko, D. Sychev, Phys.Lett.B 852 (2024) 138604
V. Braguta, M. Chernodub, I. Kudrov, A. Roenko, D. Sychev, JETP Lett. 117 (2023) 9
V. Braguta, M. Chernodub, I. Kudrov, A. Roenko, D. Sychev, Phys.Rev.D 110 (2024) 1,
014511

▶ Inhomogeneous phase transition
V. Braguta, M. Chernodub, A. Roenko, Phys.Lett.B 855 (2024) 138783
V. Braguta, M.N. Chernodub, Ya. Gershtein, A. Roenko, JHEP 09 (2025) 079
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Study of rotating QGP

▶ Our aim: study rotating QCD within lattice simulations
▶ Rotating QCD at thermodynamic equilibrium

▶ At the equilibrium the system rotates with some Ω
▶ The study is conducted in the reference frame which

rotates with QCD matter
▶ QCD in external gravitational field

▶ Boundary conditions are very important!
Causality condition: v<c
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Details of the simulations

▶ Gluodynamics is studied at thermodynamic equilibrium in
external gravitational field

▶ The metric tensor

gµν =


1− r2Ω2 Ωy −Ωx 0

Ωy −1 0 0
−Ωx 0 −1 0
0 0 0 −1


▶ Geometry of the system: Nt ×Nz ×Nx ×Ny = Nt ×Nz ×N2

s
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Details of the simulations

▶ Partition function (Ĥ is conserved)

Z = Tr exp
[
−βĤ

]
=

∫
DUDψDψ̄ exp

[
−S]

▶ Euclidean action(in the cylindrical coordinates)

S = S0 + S1Ω+ S2Ω
2

S1 =

∫
d4x r

(
i

g2
[
F a
rφ̂F

a
τr − F a

φ̂zF
a
τz

]
+ ψ̄γ4Dφ̂ψ +

i

2
ψ̄γ4σ12ψ

)
talk of Artem Roenko

S2 = − 1

2g2

∫
d4x r2

[
(F a

φ̂z)
2 + (F a

rφ̂)
2
]

▶ S1 total momentum, S2 centrifugal force

▶ Competition of S1 and S2
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Details of the simulations
Boundary conditions

▶ Periodic b.c.:
▶ Ux,µ = Ux+Ni,µ

▶ Not appropriate for the field of velocities of rotating body

▶ Dirichlet b.c.:
▶ Ux,µ

∣∣
x∈Γ

= 1, Aµ

∣∣
x∈Γ

= 0
▶ Violate Z3 symmetry

▶ Neumann b.c.:
▶ Outside the volume UP = 1, Fµν = 0

▶ The dependence on boundary conditions is the property of all
approaches

▶ One can expect that boundary conditions influence our results
considerably, but their influence is restricted due to the screening
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Details of the simulations

Sign problem

SG =
1

2g2

∫
d4x

[
(F a

τr)
2 + (F a

τφ̂)
2 + (F a

τz)
2 +

+(F a
rz)

2 +
(
1− (Ωr)2

)
(F a

φ̂z)
2 +

(
1− (Ωr)2

)
(F a

rφ̂)
2 +

+2irΩ(F a
rφ̂F

a
τr − F a

φ̂zF
a
τz)

]

▶ The Euclidean action has imaginary part (sign problem)

▶ Simulations are carried out at imaginary angular velocities
Ω → iΩI

▶ The results are analytically continued to real angular velocities

▶ This approach works up to sufficiently large Ω

▶ Sometimes instead of Ω2 we use v2 = (ΩR)2 and v2I = (ΩIR)
2

14



Ehrenfest–Tolman law

▶ In gravitational field the temperature is not constant in space at
thermal equilibrium

T (r)
√
g00 = const = T0

T (r) =
T0√

1− (Ωr)2
=

T0√
1 + (ΩIr)2

▶ We use the designation T = T (r = 0) = T0

▶ Rotation effectively heats the system: T (r) > T (r = 0)

▶ Inhomogeneous phase: confinement in the center and
deconfinement in the periphery

▶ For imaginary rotation: deconfinement/confinement in the
center/periphery

▶ We observe this phenomenon for accelerated observer
talk of Jayanta Dey
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Inhomogeneous phase transition in GP

▶ Huge lattices are required for simulations
▶ Cylindrical Symmetry is restored
▶ The results for PBC and OBC coincides in the bulk
▶ Confinement in the center and deconfinement in the periphery

In disagreement with Ehrenfest–Tolman law

▶ Inhomogeneous phase takes place below Tc
Confinement/deconfinement phase transition as a vortex? 16



Inhomogeneous phase transition in QGP

▶ The phase transition is induced by rotation
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Inhomogeneous phase transition in QCD
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▶ It remains to be true for quarks (Preliminary results!)
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Local critical temperature Tc(r,ΩI)

▶ Our results can be well described by the formula
Tc(r,ΩI)

Tc0
= 1− κ2(ΩIr)

2

▶ Within the uncertainty Tc(r=0,ΩI)
Tc0

= 1

▶ Weak dependence on the simulation parameters 19



Analytical continuation to real rotation

▶ Analytical continuation Ω2
I → −Ω2:

Tc(r,Ω)
Tc0

= 1 + κ2(Ωr)
2

▶ Inhomogeneous phase can be realised for T > Tc0

▶ Deconfinement in the center and confinement in the periphery
▶ Asymmetric QGP 20



Decomposition of the action

▶ Rotating action in the cylindrical coordinates

S = S0 + S1ΩI + S2Ω
2
I

▶ S1 = − 1
g2

∫
d4x r

[
F a
rφ̂F

a
τr − F a

φ̂zF
a
τz

]
▶ S2 = 1

2g2

∫
d4x r2

[
(F a

φ̂z)
2 + (F a

rφ̂)
2
]

▶ S1 is the total angular momentum and gives I > 0

▶ S2 is the centrifugal force and gives I < 0

How S1 and S2 influence on the inhomogeneous phase
transition?
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Decomposition of the action

▶ S2 is similar to the total acton and gives the dominant
contribution

▶ S1 effect is the opposite to the the total acton
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Decomposition of the action

▶ S1 increases the local critical temperature
▶ S2 decreases the local critical temperature
▶ The contribution of S2 is dominant 23



Local thermalization hypothesis

S =
1

2g2

∫
d4x

[
(F a

τr)
2 + (F a

τφ̂)
2 + (F a

τz)
2 + (F a

rz)
2 +

+
(
1− (Ωr)2

)
(F a

φ̂z)
2 +

(
1− (Ωr)2

)
(F a

rφ̂)
2 +

+2irΩ(F a
rφ̂F

a
τr − F a

φ̂zF
a
τz)

]
▶ For slow rotation Ωζ ≪ 1 the coefficients vary slowly

▶ Local thermalization approximation: study the action with the
coefficients freezed at r = r0
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Local thermalization hypothesis

▶ Good agreement with the full action for sufficiently small Ω
▶ A lot of advantages

▶ The higher order coefficients can be found
Tc(r,Ω)/Tc0 = 1 +

∑
n cn(Ωr)

2n, Tc(r = 0,Ω)/Tc0 = 1
▶ Weak dependence on the BC
▶ One can study small lattices
▶ Allows to understand inhomogeneous phase transition
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Origin of the inhomogeneous phase transition

SG =

∫
d4x

[ 1

2g2
(
(Ea

x)
2 + (Ea

y )
2 + (Ea

z )
2 + (Ha

y )
2
)
+

+
1

2g̃2
(
(Ha

x)
2 + (Ha

z )
2
) ]

▶ Linear in Ω term can be neglected

▶ External gravitational field leads to the asymmetric action
g2

g̃2 = 1− (Ωr)2

▶ The asymmetry g2/g̃2 is larger in the periphery region leading to
the shift of the critical temperature

▶ GR effect!
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Conclusion

▶ Lattice studies of rotating gluodynamics and QCD have
been carried out

▶ We observed inhomogeneous phase transition in GP:
deconfinement in the central and confinement in the
periphery regions

▶ External gravitational field leads to asymmetryc action and
shift of the critical temperature in the periphery regions

▶ We believe that all the observed effects remain in QCD

THANK YOU!
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Backup slides: Simulation with fermions

▶ Lattice simulation with Wilson fermions
▶ Critical couplings of both transitions coincide
▶ Critical temperatures are increased
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Backup slides: Simulation with fermions

▶ QCD action: S = Sf (ΩF ) + Sg(ΩG)

▶ One can introduce velocities for gluons ΩG and fermions ΩF

▶ ΩF ̸= 0,ΩG = 0 decreases critical temperatures
▶ ΩF = 0,ΩG ̸= 0 increases critical temperatures
▶ The gluon sector gives the dominant contribution
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Backup slides:
Simulation with fermions (e-Print: 2307.05755)

▶ Increase of the bulk average critical temperatures of both
transitions
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Backup slides:
Simulation with fermions (e-Print: 2307.05755)

▶ Rotational rigidities: ρJG
= JG

ΩR2 , ρLf
=

Lf

ΩR2

▶ Spin susceptibility: ζf = s
Ω

▶ Negative moment of inertia
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