Spatially inhomogeneous confinement/deconfinement transition in rotating gluodynamics and QCD

$V.~Braguta^1$

in collaboration with

M. Chernodub and A. Roenko

XXVI International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics"

16 September 2025

¹ Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics

QCD under extreme conditions

- ▶ High temperatures
- ► Large baryon density
- ► Intense magnetic fields
- Strong acceleration (up to $a \sim 1$ GeV) talk of Jayanta Dey
- ► Relativistic rotation

Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

- $\Omega = (P_{\Lambda} + P_{\bar{\Lambda}}) \frac{k_B T}{\hbar}$ (Phys. Rev. C 95, 054902 (2017))
- ▶ $\Omega \sim 10 \text{ MeV } (v \sim c \text{ at distances } 10\text{-}20 \text{ fm}, \sim 10^{22} \text{ s}^{-1})$
- ► Relativistic rotation of QGP

How relativistic rotation influences QCD?

Quantum Chromodynamics(QCD)

- ▶ Degrees of freedom
 - ightharpoonup Quarks q
 - ► Gluons A
- ► The QCD Lagrangian is well known

$$L = -\frac{1}{4} \sum_{a=1}^{8} F_{a}^{\mu\nu} F_{\mu\nu}^{a} + \sum_{f=u,d,s,...} \bar{q}_{f} (i\gamma^{\mu} \partial_{\mu} - m) q_{f} + g \sum_{f=1}^{N_{f}} \bar{q}_{f} \gamma^{\mu} \hat{A}_{\mu} q_{f}$$

- ▶ Non-linear equations of motion with $g \sim 1$
- ► The main problem: calculation of observables based on the QCD Lagrangian
- ► Theoretical approaches contain assumptions with systematic errors which are difficult to estimate

Building lattice QCD

QCD Lagrangian

- Introduce regular cubic four dimensional lattice $N_s \times N_s \times N_s \times N_t = N_s^3 \times N_t$
- ightharpoonup Lattice spacing-a
- Degrees of freedom
 - ▶ Gluon fields: 3x3 matrices $U \in SU(3)$, live on links
 - **Quarks fields:** column q, \bar{q} , live on sites

Lattice QCD

▶ QCD partition function (thermodynamic equilibrium!)

$$Z = \int DU D\psi D\bar{\psi} \exp\left(-S_G - S_Q\right) = \int DU e^{-S_{eff}(U)}$$

- ▶ Hybrid Monte Carlo simulations (generation of gluon configurations with weight $\sim e^{-S_{eff}(U)}$)
- ▶ In continuum lattice partition function exactly reproduces QCD partition function
 - ► Gluon contribution: $S_G|_{a\to 0} = -\frac{1}{4} \sum_{a=1}^8 F_a^{\mu\nu} F_{\mu\nu}^a$
 - ▶ Quark contribution: $S_Q|_{a\to 0} = \bar{q}(\gamma^{\mu}\partial_{\mu} + ig\gamma^{\mu}A_{\mu} + m)q$
- ightharpoonup Carry out continuum extrapolation $a \to 0$
- Uncertainties (discretization and finite volume effects) can be systematically reduced
- ▶ The first principles based approach. No assumptions!
- ▶ Parameters: coupling constant g(a) and masses of quarks $m_q(a)$
- ▶ The millennium problem can be solved for one hour

Phase transitions in QCD

- ► Confinement/deconfinement transition
- ► Chiral symmetry breaking/restoration transition

Confinement/deconfinement transition in QCD

► Order parameter Polyakov line:

$$P(\vec{x}) = \langle TrP \exp\left(ig \int_0^T dx^4 \hat{A}_4(\vec{x}, x^4)\right) \rangle$$

$$P = e^{-F_Q/T}$$

- Confinement: $F_Q = \infty \Rightarrow P = 0$
- ▶ Deconfinement: $F_Q < \infty \Rightarrow P \neq 0$
- ► Z_3 symmetry of gluodynamics but $P \to e^{2\pi k/3i}P$, k = 0, 1, 2
- ▶ P is similar to magnetization in ferromagnetic
- ► First order phase transition in SU(3) gluodynamics
- ightharpoonup Quarks violate Z_3 symmetry
- Confinement/deconfinement is crossover $T_c = (176 \pm 5) \text{ MeV}$

Z. Fodor, Phys.Lett.B 643 (2006)

Lattice studies of rotating QCD

- ► The first lattice study
 - A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013)
- ► Critical temperature of gluodynamics
 - V. Braguta, A. Kotov, D. Kuznedelev, A. Roenko, JETP Lett. 112 (2020) 1, 6
 V. Braguta, A. Kotov, D. Kuznedelev, A. Roenko, Phys.Rev.D 103 (2021) 9, 094515
- ► Critical temperatures in QCD
 - V. Braguta, A. Kotov, A. Roenko, D. Sychev, PoS LATTICE2022 (2023) 190 Ji-Chong Yang, Xu-Guang Huang, e-Print: 2307.05755
- ► Equation of state and moment of inertia talks of Egor Eremeev and Dmitrii Sychev
 - V. Braguta, M. Chernodub, A. Roenko, D. Sychev, Phys.Lett.B 852 (2024) 138604
 V. Braguta, M. Chernodub, I. Kudrov, A. Roenko, D. Sychev, JETP Lett. 117 (2023) 9
 V. Braguta, M. Chernodub, I. Kudrov, A. Roenko, D. Sychev, Phys.Rev.D 110 (2024) 1, 014511
- ► Inhomogeneous phase transition
 - V. Braguta, M. Chernodub, A. Roenko, Phys.Lett.B 855 (2024) 138783 V. Braguta, M.N. Chernodub, Ya. Gershtein, A. Roenko, JHEP 09 (2025) 079

Study of rotating QGP

- ▶ Our aim: study rotating QCD within lattice simulations
- ▶ Rotating QCD at thermodynamic equilibrium
 - \triangleright At the equilibrium the system rotates with some Ω
 - ► The study is conducted in the reference frame which rotates with QCD matter
 - QCD in external gravitational field
- ► Boundary conditions are very important! Causality condition: v<c

- Gluodynamics is studied at thermodynamic equilibrium in external gravitational field
- ► The metric tensor

$$g_{\mu\nu} = \begin{pmatrix} 1 - r^2 \Omega^2 & \Omega y & -\Omega x & 0 \\ \Omega y & -1 & 0 & 0 \\ -\Omega x & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

▶ Geometry of the system: $N_t \times N_z \times N_x \times N_y = N_t \times N_z \times N_s^2$

ightharpoonup Partition function (\hat{H} is conserved)

$$Z = \text{Tr } \exp \left[-\beta \hat{H} \right] = \int DU D\psi D\bar{\psi} \ \exp \left[-S \right]$$

► Euclidean action(in the cylindrical coordinates)

$$S = S_0 + S_1 \Omega + S_2 \Omega^2$$

$$S_1 = \int d^4 x \ r \left(\frac{i}{g^2} \left[F_{r\hat{\varphi}}^a F_{\tau r}^a - F_{\hat{\varphi} z}^a F_{\tau z}^a \right] + \bar{\psi} \gamma_4 D_{\hat{\varphi}} \psi + \frac{i}{2} \bar{\psi} \gamma_4 \sigma_{12} \psi \right)$$
talk of Artem Roenko

$$S_2 = -\frac{1}{2g^2} \int d^4x \ r^2 \left[(F^a_{\hat{\varphi}z})^2 + (F^a_{r\hat{\varphi}})^2 \right]$$

- \triangleright S_1 total momentum, S_2 centrifugal force
- ightharpoonup Competition of S_1 and S_2

Boundary conditions

- ▶ Periodic b.c.:
 - $V_{x,\mu} = U_{x+N_i,\mu}$
 - Not appropriate for the field of velocities of rotating body
- ▶ Dirichlet b.c.:
 - $U_{x,\mu}\big|_{x\in\Gamma} = 1, \quad A_{\mu}\big|_{x\in\Gamma} = 0$
 - ightharpoonup Violate Z_3 symmetry
- ▶ Neumann b.c.:
 - Outside the volume $U_P = 1$, $F_{\mu\nu} = 0$
- ► The dependence on boundary conditions is the property of all approaches
- ▶ One can expect that boundary conditions influence our results considerably, but their influence is restricted due to the screening

Sign problem

$$S_{G} = \frac{1}{2g^{2}} \int d^{4}x \left[(F_{\tau r}^{a})^{2} + (F_{\tau \hat{\varphi}}^{a})^{2} + (F_{\tau z}^{a})^{2} + (F_{rz}^{a})^{2} + (1 - (\Omega r)^{2}) (F_{\hat{\varphi}z}^{a})^{2} + (1 - (\Omega r)^{2}) (F_{r\hat{\varphi}}^{a})^{2} + (1 - (\Omega r)^{2}) (F_{r\hat{\varphi}}^{a$$

- ► The Euclidean action has imaginary part (sign problem)
- \blacktriangleright Simulations are carried out at imaginary angular velocities $\Omega \to i\Omega_I$
- ▶ The results are analytically continued to real angular velocities
- ▶ This approach works up to sufficiently large Ω
- ▶ Sometimes instead of Ω^2 we use $v^2 = (\Omega R)^2$ and $v_I^2 = (\Omega_I R)^2$

Ehrenfest-Tolman law

▶ In gravitational field the temperature is not constant in space at thermal equilibrium

$$T(r)\sqrt{g_{00}} = const = T_0$$

$$T(r) = \frac{T_0}{\sqrt{1 - (\Omega r)^2}} = \frac{T_0}{\sqrt{1 + (\Omega_I r)^2}}$$

- We use the designation $T = T(r = 0) = T_0$
- ▶ Rotation effectively heats the system: T(r) > T(r = 0)
- ► Inhomogeneous phase: confinement in the center and deconfinement in the periphery
- ► For imaginary rotation: deconfinement/confinement in the center/periphery
- ► We observe this phenomenon for accelerated observer talk of Jayanta Dey

Inhomogeneous phase transition in GP

- ► Huge lattices are required for simulations
- Cylindrical Symmetry is restored
- ▶ The results for PBC and OBC coincides in the bulk
- ► Confinement in the center and deconfinement in the periphery

 In disagreement with Ehrenfest-Tolman law
- ► Inhomogeneous phase takes place below T_c

 Confinement/deconfinement phase transition as a vortex?

Inhomogeneous phase transition in QGP

▶ The phase transition is induced by rotation

Inhomogeneous phase transition in QCD

► It remains to be true for quarks (Preliminary results!)

Local critical temperature $T_c(r, \Omega_I)$

▶ Our results can be well described by the formula

$$\frac{T_c(r,\Omega_I)}{T_{c0}} = 1 - \kappa_2(\Omega_I r)^2$$

- Within the uncertainty $\frac{T_c(r=0,\Omega_I)}{T_{c0}}=1$
- ▶ Weak dependence on the simulation parameters

Analytical continuation to real rotation

▶ Analytical continuation $\Omega_I^2 \to -\Omega^2$:

$$\frac{T_c(r,\Omega)}{T_{c0}} = 1 + \kappa_2(\Omega r)^2$$

- ▶ Inhomogeneous phase can be realised for $T > T_{c0}$
- ▶ Deconfinement in the center and confinement in the periphery
- ► Asymmetric QGP

Decomposition of the action

▶ Rotating action in the cylindrical coordinates

$$S = S_0 + \frac{S_1}{\Omega_I} \Omega_I + \frac{S_2}{\Omega_I^2} \Omega_I^2$$

- $ightharpoonup S_2 = \frac{1}{2g^2} \int d^4x \ r^2 \left[(F^a_{\hat{\varphi}z})^2 + (F^a_{r\hat{\varphi}})^2 \right]$
- ▶ S_1 is the total angular momentum and gives I > 0
- ▶ S_2 is the centrifugal force and gives I < 0

How S_1 and S_2 influence on the inhomogeneous phase transition?

Decomposition of the action

- \triangleright S_2 is similar to the total acton and gives the dominant contribution
- \triangleright S_1 effect is the opposite to the total acton

Decomposition of the action

- \triangleright S_1 increases the local critical temperature
- \triangleright S_2 decreases the local critical temperature
- ▶ The contribution of S_2 is dominant

Local thermalization hypothesis

$$S = \frac{1}{2g^2} \int d^4x \left[(F_{\tau r}^a)^2 + (F_{\tau \hat{\varphi}}^a)^2 + (F_{\tau z}^a)^2 + (F_{rz}^a)^2 + (1 - (\Omega r)^2) (F_{\hat{\varphi} z}^a)^2 + (1 - (\Omega r)^2) (F_{r\hat{\varphi}}^a)^2 + (1 - (\Omega r)^2) (F_{r\hat{\varphi}}^a F_{\tau r}^a - F_{\hat{\varphi} z}^a F_{\tau z}^a) \right]$$

- For slow rotation $\Omega \zeta \ll 1$ the coefficients vary slowly
- Local thermalization approximation: study the action with the coefficients freezed at $r = r_0$

Local thermalization hypothesis

- ▶ Good agreement with the full action for sufficiently small Ω
- ► A lot of advantages
 - The higher order coefficients can be found $T_c(r,\Omega)/T_{c0} = 1 + \sum_n c_n(\Omega r)^{2n}, \quad T_c(r=0,\Omega)/T_{c0} = 1$
 - ▶ Weak dependence on the BC
 - ▶ One can study small lattices
 - ▶ Allows to understand inhomogeneous phase transition

Origin of the inhomogeneous phase transition

$$S_G = \int d^4x \left[\frac{1}{2g^2} \left((E_x^a)^2 + (E_y^a)^2 + (E_z^a)^2 + (H_y^a)^2 \right) + \frac{1}{2\tilde{g}^2} \left((H_x^a)^2 + (H_z^a)^2 \right) \right]$$

- \triangleright Linear in Ω term can be neglected
- External gravitational field leads to the asymmetric action $\frac{g^2}{\bar{g}^2} = 1 (\Omega r)^2$
- ▶ The asymmetry g^2/\tilde{g}^2 is larger in the periphery region leading to the shift of the critical temperature
- ► GR effect!

Conclusion

- ► Lattice studies of rotating gluodynamics and QCD have been carried out
- ▶ We observed inhomogeneous phase transition in GP: deconfinement in the central and confinement in the periphery regions
- ► External gravitational field leads to asymmetry action and shift of the critical temperature in the periphery regions
- ▶ We believe that all the observed effects remain in QCD

THANK YOU!

Backup slides: Simulation with fermions

- ▶ Lattice simulation with Wilson fermions
- ▶ Critical couplings of both transitions coincide
- Critical temperatures are increased

Backup slides: Simulation with fermions

- ▶ QCD action: $S = S_f(\Omega_F) + S_g(\Omega_G)$
- One can introduce velocities for gluons Ω_G and fermions Ω_F
- $ightharpoonup \Omega_F \neq 0, \Omega_G = 0$ decreases critical temperatures
- $ightharpoonup \Omega_F = 0, \Omega_G \neq 0$ increases critical temperatures
- ► The gluon sector gives the dominant contribution

Backup slides: Simulation with fermions (e-Print: 2307.05755)

► Increase of the bulk average critical temperatures of both transitions

Backup slides:

Simulation with fermions (e-Print: 2307.05755)

- ▶ Rotational rigidities: $\rho_{J_G} = \frac{J_G}{\Omega R^2}$, $\rho_{L_f} = \frac{L_f}{\Omega R^2}$
- ▶ Spin susceptibility: $\zeta_f = \frac{s}{\Omega}$
- ► Negative moment of inertia