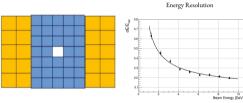
Study of the Response of the Forward Hadron Calorimeter in Xe+CsI Reactions at 3.8 AGeV at the BM@N

Nikolay Karpushkin on behalf of the INR RAS group

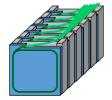


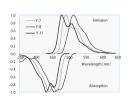
18 September 2025

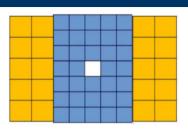
Outline

- 1. FHCal of the BM@N Experiment
- 2. Simulation
- 3. Calibration
- 4. Event Selection
- 5. Experiment & Simulation comparison
- 6. Conclusions

FHCal of the BM@N Experiment at NICA


- Forward Hadron Calorimeter (FHCal)
 - Modular hadronic calorimeter for spectators and forward particles
- Key physics tasks:
 - o Event centrality determination
 - o Reaction plane orientation


FHCal: Forward Hadron Calorimeter



Module Assembly

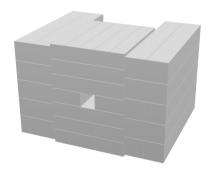
- 34 inner modules (15x15 cm²): 42 Pb/scint layers
- 20 outer modules (20x20 cm²): 60 Pb/scint layers
- Length: Small: \sim 4 λ_{int} ; Large: \sim 5.6 λ_{int}
- Light collection: 6 WLS fibers per 6 tiles → combined to one optical connector at the end of module
- Light readout:
 - o 7 MPPCs (small), 10 MPPCs (large)
- Module weight:
 - o 200 kg (small), 500 kg (large)

MPPC (SiPM): Hamamatsu S12572-010P

- Active area: 3x3 mm²
- 90,000 pixels
- Gain: 1.35 · 10⁵
- PDE: 12% @ 450 nm

Realistic FHCal Simulation

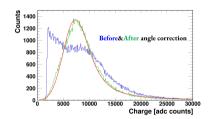
• Detailed detector geometry


o All passive and active materials included in ROOT-based geometry

Birks' saturation effect

- o Non-linear scintillator response for highly ionizing particles
- \circ $dL/dx \propto \frac{dE/dx}{1+k_B \cdot dE/dx}$

• Photon statistics and sensor response

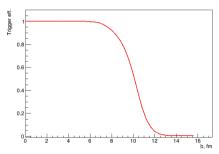

- Poisson sampling of the number of detected photons
 MPPC saturation taken into account:
- - Finite number of pixels: 90,000
 - · Smooth saturation at high light yields

Calibration with Cosmic Muons

- Detector is calibrated using cosmic muons:
 - Denoise raw data
 - o Reconstruct muon tracks as straight lines
 - o Perform angular correction and extract MIP peak

Event Selection

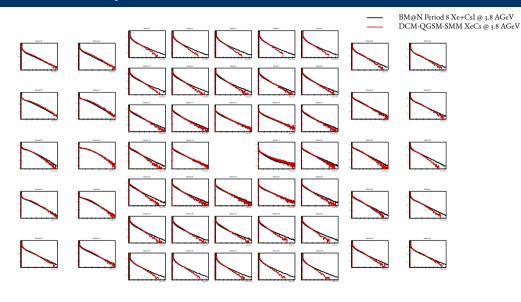
- Vertex
 - O At least 2 tracks in primary vertex
 - $(X^2 + Y^2) < 1$

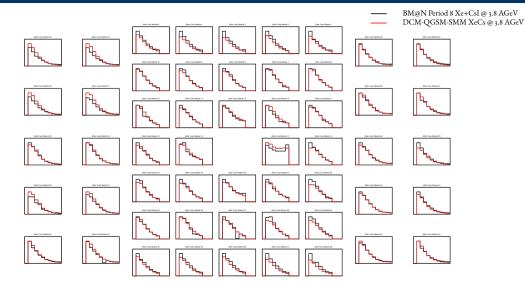

Experiment

- Trigger selection: Central Trigger
- Single Xe ion in 3.6 μs by Beam Counter 1

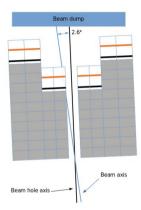
Event selection:

Simulation

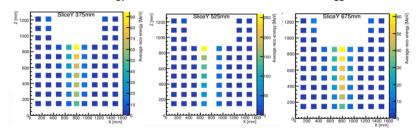

Central Trigger efficiency → see talk by D.Idrisov


FHCal signals selection:

• FHCal noise threshold in section 0.5 MIP


Experimental & Simulated Responses

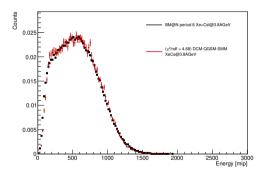
Experimental & Simulated Responses



FHCal position correction

after period 8 FHCal was rotated and is now aligned to beam axis

Energy distribution in calorimeter sections. Beam trigger


Conclusions

• FHCal simulation (DCM-QGSM-SMM) aligns well with Run 8 data

- o MIP-based scaling
- o Refactored simulation and digitization code
- Signal charge as a measure of deposited energy
- o Significant reduction in experiment-MC discrepancies

• Future plans

- o Perform a dedicated analysis of the most forward detectors
- o Test alternative MC models (URQMD-AMC, URQMD-SMM)
- Refactoring of the other forward detectors (e.g. Forward Quarz Hodoscope)

Thank You!