Directed flow of deuterons in Xe+Cs(I) collisions at 3.8A GeV at the BM@N experiment I. Zhavoronkova^{1,2}, M. Mamaev^{1,2}, A. Taranenko^{1,2} for the BM@N Collaboration ¹JINR, ²NRNU MEPhI XXVIth International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics The work has been supported by the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental and applied research at the NICA (JINR) megascience experimental complex" № FSWU-2025-0014 #### **Anisotropic flow** Spatial asymmetry of the initial state matter produced particles Spatial asymmetry of the initial state matter transforms into momentum anisotropy of the $$\rho(\phi - \Psi_{RP}) = \frac{1}{2\pi}(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_{RP})))$$ Coalescence mechanism: assuming $v_n^p \approx v_n^n$ $$v_n^A(p_{\rm T}, y)/A \approx v_n^p(p_{\rm T}/A, y)$$ $v_n = \langle \cos(n(\phi - \Psi_R)) \rangle$ n – harmonic number Ψ_{RP} – reaction plane angle #### The BM@N Setup: Xe+CsI 3.8A Gev Nucl. Instrum. Meth. A 1065 (2024) 169532 ## Centrality. Particle identification #### **Deuteron identification criteria** N- σ distributions for deuteron candidates Solid lines represent the selection criteria for different p/q ranges. # Deuteron p_T-y acceptance #### Flow vectors and SP method A unit vector is defined in the transverse plane for each particle k: $$u_{n,k} = e^{in\phi_k}$$ Event flow vector Q_n - an estimate of the reaction plane: $$Q_n = \frac{\sum_{k=1}^{M} w_k u_{n,k}}{\sum_{k=1}^{M} w_k} = |Q_n| e^{in\Psi_n^E}$$ Scalar product method and the resolution correction factor R: $$v_1= rac{\langle u_1Q_1^{F1} angle}{R_1^{F1}}$$ $R_1^{F1}=\langle\cos(\Psi_1^{F1}-\Psi_1^{RP}) angle$ Using three groups of particles and the pairwise correlations of Q_1 , R_1 reads $$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1} angle \langle Q_1^{F2}Q_1^{F3} angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3} angle}} \ R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp} angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3} angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1} angle \langle Q_1^{Tp}Q_1^{F3} angle}} \ .$$ #### Symmetry plane resolution as a function of centrality Different estimations of R_1 are in reasonable agreement for all three symmetry planes. # v_1 of protons and deuterons as a function of y and p_T v_1 of deuterons is larger than v_1 of protons as expected. # v₁ of protons and deuterons as a function of p_T ## Scaled v_1 of protons and deuterons as a function of scaled p_T/A v_1 follows approximate scaling with mass number A. #### The slope of v₁ of deuterons at midrapidity as a function of collision energy Directed flow slope of deuterons at midrapidity dv₁/dy is found to be in a good agreement with existing world data. Nucl. Phys A 876 (2012) 1-60 EPJ Web Conf. 296, 05014 (2024) Phys. Rev. C 103, 034908 ## Summary - v₁ of deuterons was measured differentially as a function of transverse momentum, rapidity and centrality - The directed flow v_1 of protons and deuterons was studied for mass-number scaling. v_1 for protons and deuterons follow the scaling. - The directed flow slope at midrapidity $dv_1/dy|_{y=0}$ was extracted. Value for $dv_1/dy|_{y=0}$ is found to be in agreement with the world data