

Centrality determination in heavy-ion collisions at the NICA energy range.

Demanov Alexander (MEPhi)
Peter Parfenov (JINR, NRNU MEPhI)
Arkady Taranenko (MEPhI, JINR)

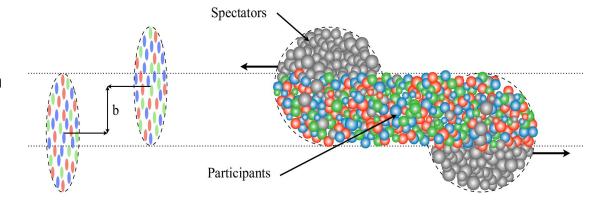
XXVIth International Baldin Seminar on High Energy Physics Problems September 15-20, 2025

Motivation for centrality determination

- Evolution of matter produced in heavy-ion collisions depends on its initial geometry
- Impact parameters (b) one of the important collision parameters
 - impossible to measure experimentally
- **Goal of centrality determination:** map (on average) the collision geometry parameters to experimental observables (centrality estimators)

Centrality class S₁-S₂: group of events corresponding to a given fraction (in %) of the total cross section:

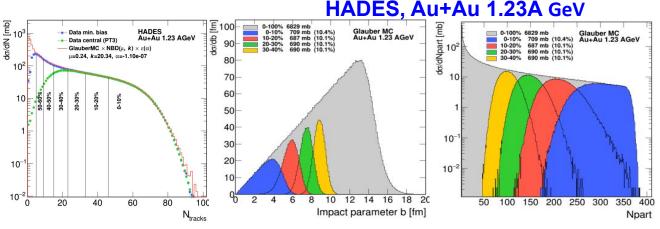
$$C_S = \frac{1}{\sigma_{inel}^{AA}} \int_{S_1}^{S_2} \frac{d\sigma}{dS} dS$$



Before collision

After collision

Centrality determination



Eur. Phys. J. A (2018) 54: 85

	, ,		,
Centrality	$b_{ m min}$	$b_{ m max}$	$\langle b \rangle$
Classes			
0 - 5%	0.00	3.30	2.20
5 - 10 %	3.30	4.70	4.04
10 - 15 %	4.70	5.70	5.22
15 - 20 %	5.70	6.60	6.16
20 - 25 %	6.60	7.40	7.01
25 - 30 %	7.40	8.10	7.75
30 – 35 %	8.10	8.70	8.40
35 – 40 %	8.70	9.30	9.00
40 – 45 %	9.30	9.90	9.60
45 - 50 %	9.90	10.40	10.15
50 - 55 %	10.40	10.90	10.65
55 – 60 %	10.90	11.40	11.15

(a) 7.7 GeV

(d) 27 GeV

200

 10^{-3}

10

10-6

10-6

10-7

10-8

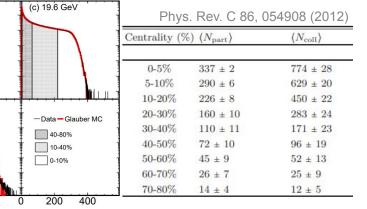
 $(1/N_{\rm evts})(dN_{\rm evts}/dN_{\rm ch}^{\rm law})$

(b) 11.5 GeV

(e) 39 GeV

200

400

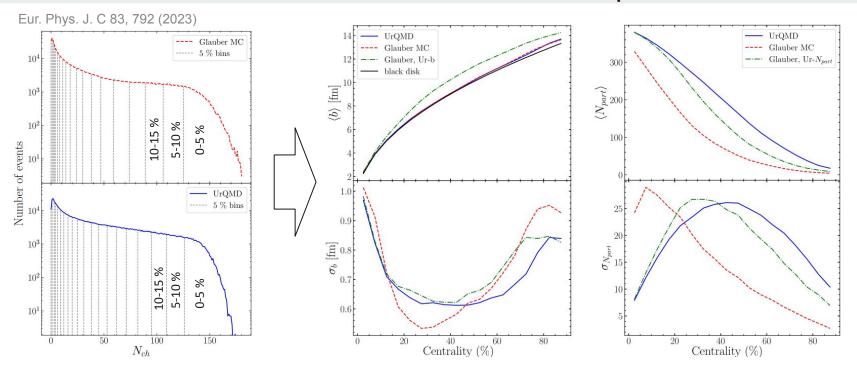


Centrality determination based on multiplicity provides with:

- impact parameter (b)
- number of participating nucleons (N_{part})

Similar centrality estimator is needed for comparisons with STAR, HADES, etc.

Model dependence of b, N_{part}



- MC-Glauber x NBD multiplicity fitting procedure is standard method for centrality determination
- The MC-Glauber non-realistic N_{part} simulations at low energies
- Differences in of number of participant nucleons (N_{part}) distributions from UrQMD and MC
- The impact parameter (**b**) model independent centrality estimator

The BM@N and MPD experiments

SImulation:

- DCM-QGSM-SMM, Xe-Cs
- **GEANT4** transport

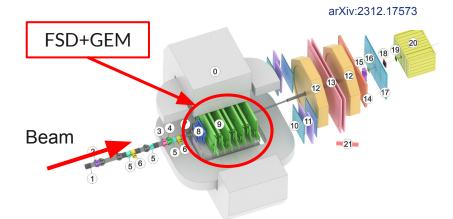
Data:

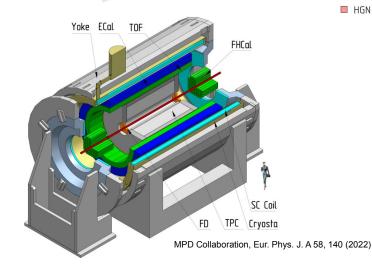
run8 Xe-CsI @3.8A GeV

Multiplicity of charged particles from tracking system FSD+GEM

SImulation:

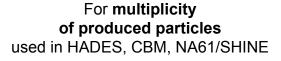
- Au+Au, UrQMD, $\sqrt{s_{NN}}$ = 5, 7.7, 11.5, 19.6, 27, 39 GeV
- Used particle selection: $|\eta|$ <0.5, p_T>0.1 GeV/c





- Vacuum Beam Pipe (1)
- **Ⅲ** BC1, VC, BC2 (2-4)
- SiBT, SiProf (5, 6) ■ Triggers: BD + SiMD (7)
- FSD, GEM (8, 9)
- CSC 1x1 m² (10)
- TOF 400 (11)
- □ DCH (12)
- TOF 700 (13)
- ScWall (14) ■ FD (15)
- Small GEM (16)
- \square CSC 2x1.5 m² (17)
- Beam Profilometer (18)
- FQH (19)
- □ FHCal (20)
- HGN (21)

Centrality determination based on Monte-Carlo sampling of produced particles



Get (b, N_{part} , N_{coll}) from MC-Glauber

Evaluate number of ancestors (sources of produced particles) $N_a = fN_{part} + (1-f)N_{coll}$

Sample multiplicity of produced particles (S_i) N_a times from NBD(μ , k)

Multiplicities from two collision events are randomly superimposed with the probability **p** ("pileup" events)

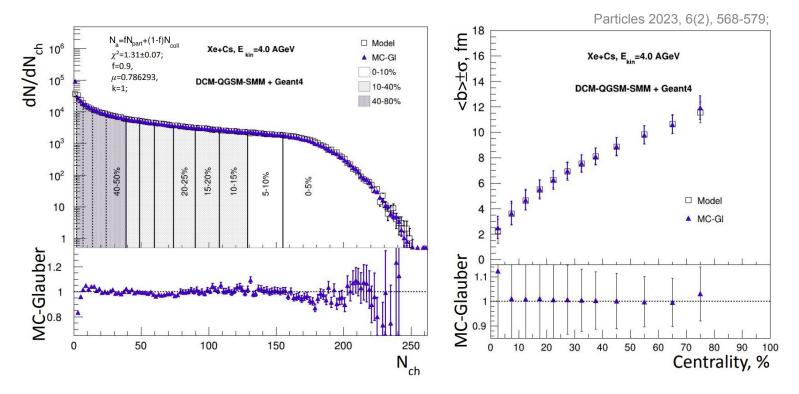
Result: total S_{tot}

Evaluate χ^2 between N/dN_{MC/data} and N/dN_{Gl}

Scan phase space of parameters to find their values for minimum of χ^2

Extract relation between geometry parameters and centrality estimator

MC-Glauber fit result Xe-Cs



- Good agreement between model data and fit
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

The Bayesian inversion method (Γ-fit)

Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta} \qquad \frac{\sigma^2}{\langle N_{ch} \rangle} = \theta \approx const, \ k = \frac{\langle N_{ch} \rangle}{\theta}$$

$$\frac{\sigma^{2}}{\left\langle N_{ch}\right\rangle }=\theta\simeq const,\,k=\frac{\left\langle N_{ch}\right\rangle }{\theta}$$

$$c_b = \int_0^b P(b')db'$$
 – centrality based on impact parameter

Mean multiplicity as a function of c_h can be defined as follows:

$$\langle N_{ch} \rangle = N_{knee} \exp \left(\sum_{j=1}^{3} a_{j} c_{b}^{j} \right)$$
 N_{knee}, θ, a_{j} - 5 parameters

$$N_{\it knee}, heta, a_{\it j}$$
 - 5 parameters

Fit function for N_{ch} distribution: $P(N_{ch}) = \int_{0}^{1} P(N_{ch}|c_b) dc_b$

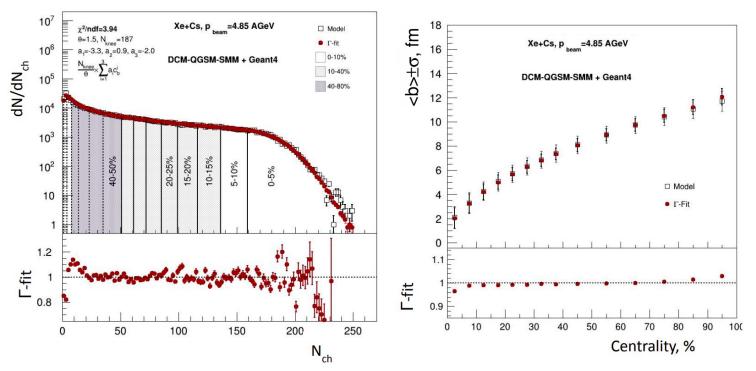
b-distribution for a given
$$N_{ch}$$
 range: $P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$

2 main steps of the method:

Fit experimental (model) distribution with P(N)

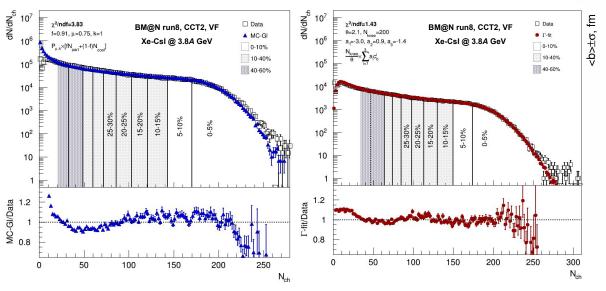
Construct P(b|N) using Bayes' theorem: P(b|N) = P(b)P(N|b)/P(N)

Γ-fit result Xe-Cs

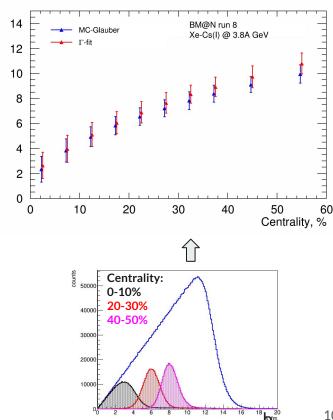


- Good agreement between model data and fit
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

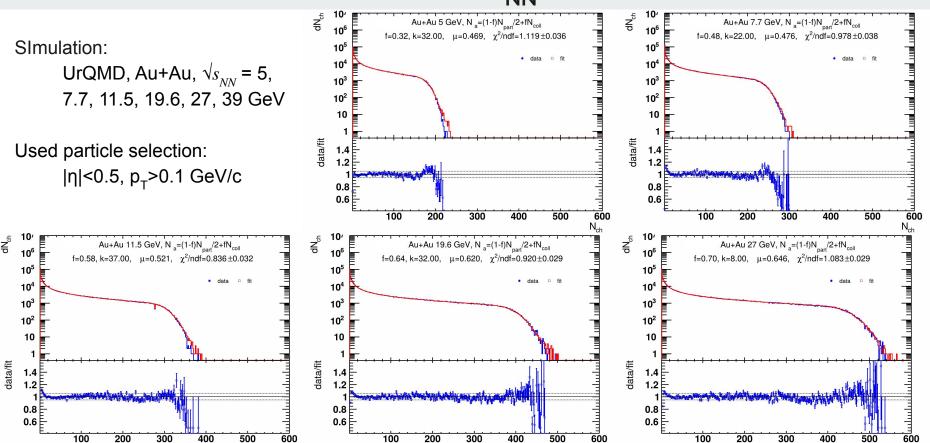
Result of centrality determination at Xe-CsI @ 3.8 AGeV



- Centrality determination methods were applied on experimental Xe-CsI data
- Good agreement between data and fit for both methods
- For Γ-fit, all centrality classes are comparable

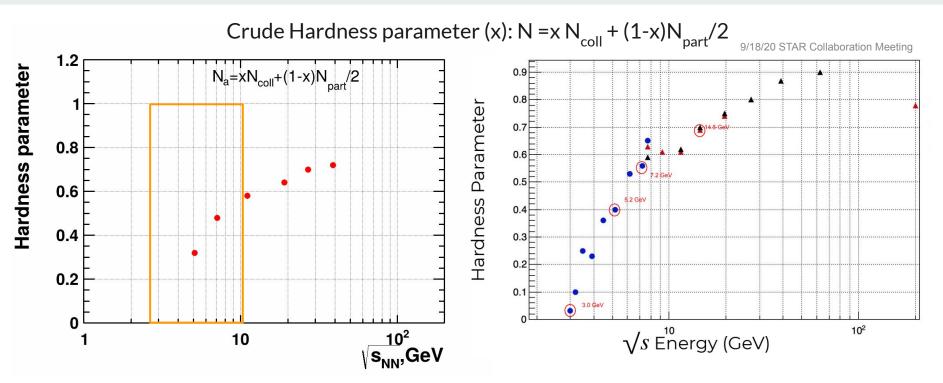


UrQMD, Au+Au, $\sqrt{s_{NN}}$ = 5-39 GeV



Good agreement between data and fit for all energies

Hardness vs. Energy

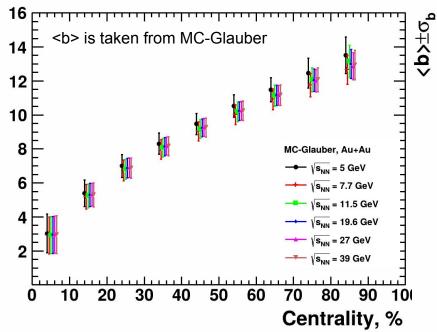


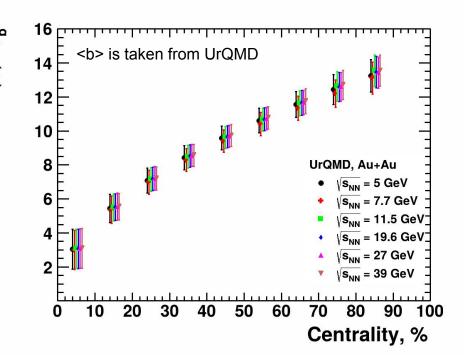
- Hardness parameter which determines Ncoll/Npart contributions to multiplicity
- Trend in Hardness vs. $\sqrt{s_{NN}}$ in UrQMD model is similar to the trend in STAR
- Strong dependence of x at low energies

 cent) vs. Energy

centrality bin: 0-10, 10-20, 20-30, ...

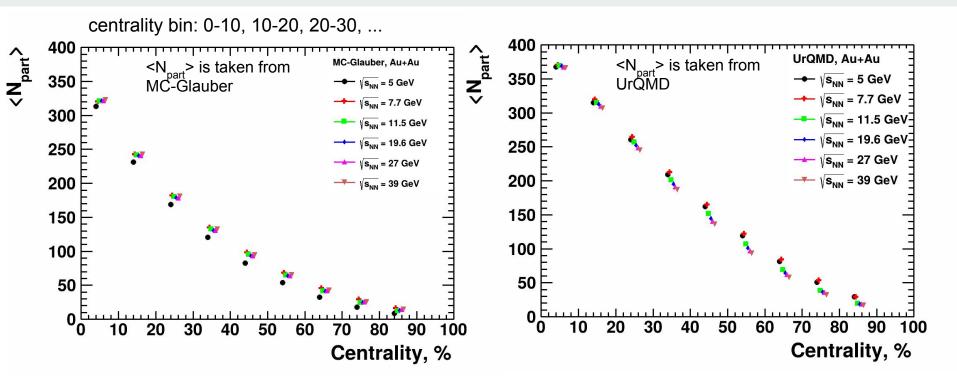
⟨b>±σ_b





- The in each centrality bin does not depend on energy
- At 5 GeV the MC-Glauber data show a deviation from other energy points

<Npart>(cent) vs. Energy



- $\langle N_{part} \rangle$ is energy-independent in MC-Glauber but shows weak dependence in UrQMD.
- At 5 GeV the MC-Glauber data show a deviation from other energy points

Summary

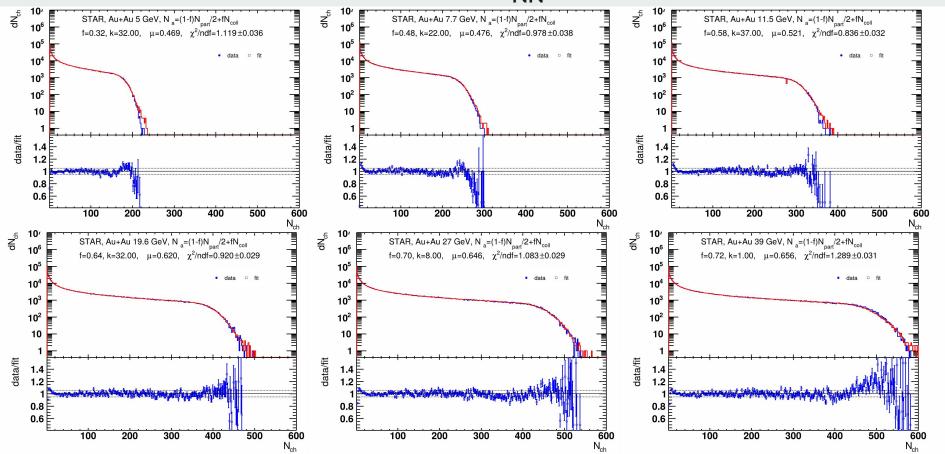
- The MC-Glauber and the Bayesian inversion method reproduce charged particle multiplicity for fixed-target experiment at BM@N
- Relation between impact parameter and centrality classes is extracted
- Impact parameter (b) from MC Glauber and UrQMD in given centrality classes are in reasonable agreement (Au+Au, UrQMD, 5-39 GeV)
- Systematic study of hardness vs $\sqrt{s_{NN}}$ in UrQMD (Au+Au, 5-39 GeV)
 - \circ Trend in Hardness vs. $\sqrt{s_{NN}}$ is similar to the trend in STAR
 - Strong dependence at low energies

Future plans:

Consider other collision systems and other models

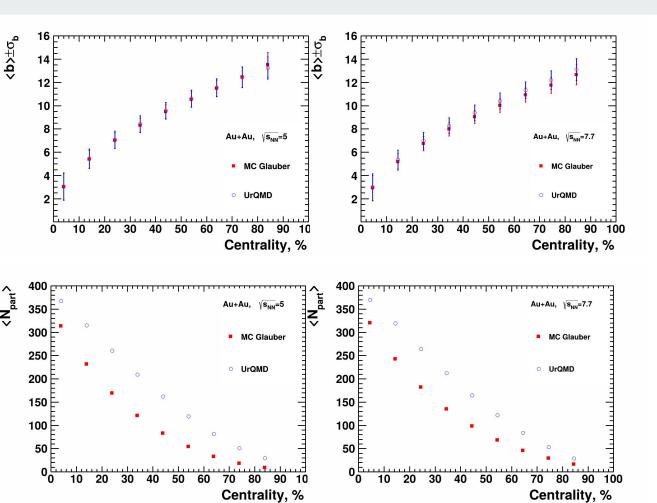
Thank you for your attention!

UrQMD, Au+Au, √s_{NN}= 5-39 GeV

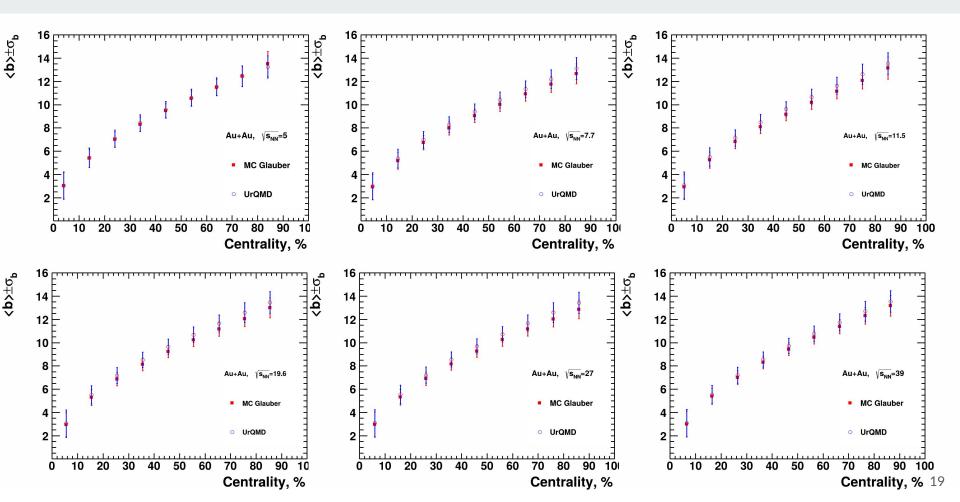


Good agreement between data and fit for all energies

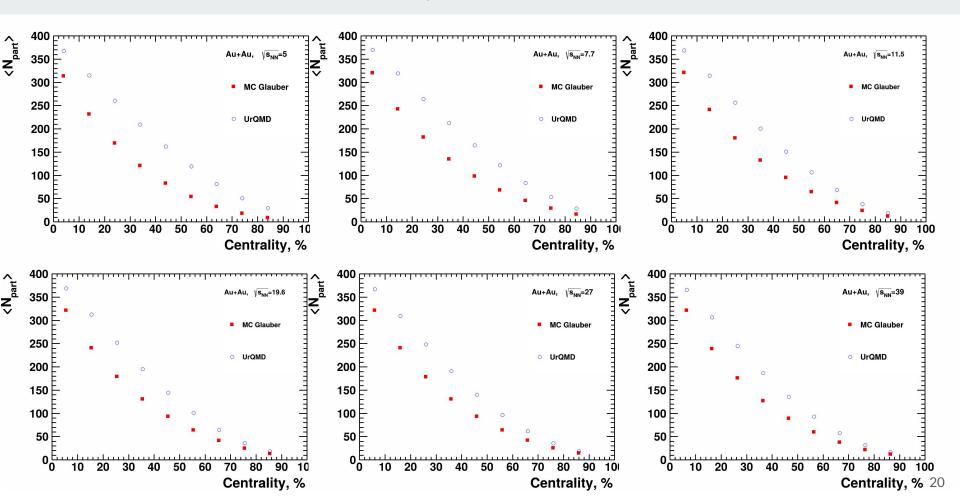
UrQMD, Au+Au, : MC Glauber vs UrQMD



UrQMD, Au+Au, : MC Glauber vs UrQMD



UrQMD, Au+Au, <Npart>: MC Glauber vs UrQMD

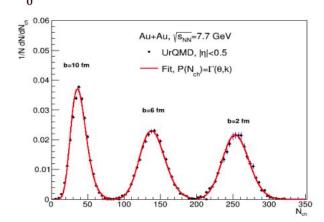


The Bayesian inversion method (Γ-fit): main assumptions

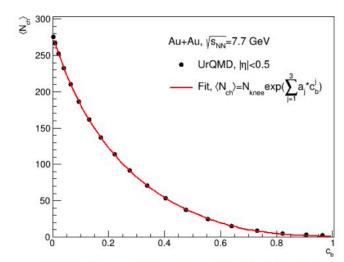
 ${\boldsymbol .}$ Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta}$$

$$c_b = \int_{0}^{b} P(b')db' \simeq \frac{\pi b^2}{\sigma_{inel}}$$
 - centrality based on impact parameter



The results of fitting the multiplicity distribution for a fixed impact parameter



The dependence of the average value of multiplicity on centrality and the results of its fit

$$\frac{\sigma^2}{\langle N_{ch} \rangle} = \theta \simeq const$$

$$\langle N_{ch} \rangle = N_{knee} \exp \left(\sum_{j=1}^{3} a_{j} c_{b}^{j} \right)$$

$$k = \frac{\langle N_{ch} \rangle}{\theta}$$

Five fit parameters

$$N_{knee}, \theta, a_j$$

Reconstruction of b

Normalized multiplicity distribution P(N_{ch})

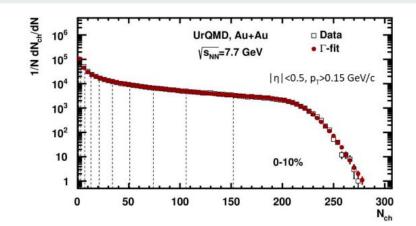
$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b) dc_b$$

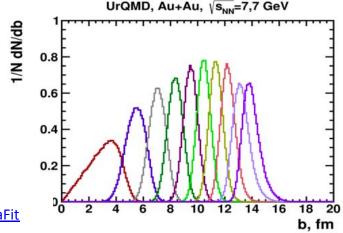
Find probability of b for fixed range of N_{ch} using Bayes' theorem:

$$P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$$

- · The Bayesian inversion method consists of 2 steps:
- -Fit normalized multiplicity distribution with P(N_{ch})
- –Construct $P(b|N_{ch})$ using Bayes' theorem with parameters from the fit

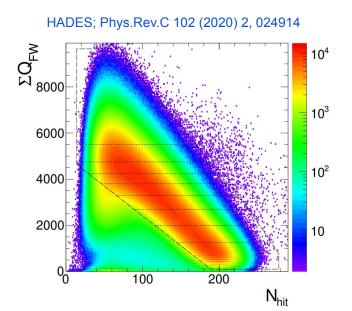
R. Rogly, G. Giacalone and J. Y. Ollitrault, Phys.Rev. C98 (2018) no.2, 024902 Implementation for MPD and BM@N by D. Idrisov: https://github.com/Dim23/GammaFit Example of application in MPD: P. Parfenov et al., Particles 4 (2021) 2, 275-287



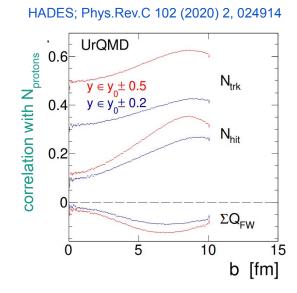


Why several alternative centrality estimators

Anticorrelation between charge of the spectator fragments (FW) and particle multiplicity (hits)



A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)



Avoid self-correlation biases when using spectators fragments for centrality estimation