# Comparison of methods for determining centrality in nucleus-nucleus collisions in the BM@N experiment

Idrisov Dim, Fedor Guber, Nikolay Karpushkin, Parfenov Peter
INR RAS, Moscow, Russia



The XXVIth International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics"



### **Centrality**



- Evolution of matter produced in heavy-ion collisions depend on its initial geometry
- Centrality procedure maps initial geometry parameters with measurable quantities (multiplicity or energy of the spectators)
- This allows comparison of the future BMAN results with the data from other experiments (STAR BES, NA49/NA61 scans) and theoretical models

$$c(b) = \frac{\int_0^b \frac{d\sigma}{db'} db'}{\int_0^\infty \frac{d\sigma}{db'} db'} = \frac{1}{\sigma_{A-A}} \int_0^b \frac{d\sigma}{db'} db'$$





HADES; Phys.Rev.C 102 (2020) 2, 024914

- A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)
- to suppress self-correlation biases, it is necessary to use spectators fragments for centrality estimation

### Centrality determination in BM@N





Dependence of energy in FHCal and track multiplicity on the impact parameter

BM@N setup overview

### MC-Glauber based centrality framework





### The Bayesian inversion method (Γ-fit): DCM-QSM-SMM based



• The fluctuation kernel for multiplicity at fixed impact parameter is Gamma distr.:

$$P(M \mid c_b) = \frac{1}{\Gamma(k(c_b))\theta^2} M^{k(c_b)-1} e^{-M/\theta}$$

$$c_b = \int_0^b P(b')db'$$
 - centrality based on impact parameter

$$\theta = \frac{D(M)}{\langle M \rangle}, \quad k = \frac{\langle M \rangle}{\theta}$$

 $\langle M \rangle$ , D(M) – average and variance of Multiplicty

$$P(M) = \int_{0}^{1} P(M \mid c_b) dc_b$$

$$\langle M \rangle = m_1 \cdot \langle M' \rangle$$

$$D(M) = m_1^2 \cdot D(M') + m_1 \cdot m_2 \langle M' \rangle$$

$$\left\langle M'(c_b) \right\rangle$$
 — average value and var. of energy/mult.   
  $D(M'(c_b))$  from the rec. model data

 can be approximated by polynomials or exponential polynomial

### Fit results: experimental data







Convoluted trigger efficiency can be calculated using Bayes' theorem

#### Signal of Hodoscope vs Run ID





The average signal value for the xenon ion in the hodoscope is weakly dependent on the Run ID

### Signal of Hodoscope vs Run ID





The average signal value in the FHCal is weakly dependent on the Run ID, but some modules require calibration

### The Bayesian inversion method (Γ-fit): 2D fit



• The fluctuation kernel for energy and multiplicity at fixed impact parameter can be describe by 2D Gamma distr.:

$$P(E,M \mid c_b) = G_{2D}(E,M,\langle E \rangle,\langle M \rangle,D(E),D(M),R)$$

 $\langle E \rangle, D(E)$  — average value and variance of energy

R(E,M) – Pirson correlation coefficient

$$P(E,M) = \int_{0}^{1} P(E,M \mid c_b) dc_b$$

$$R(E,M) = \frac{\varepsilon_1^2 m_1^2}{\varepsilon_2 m_2} R(E',M') \qquad \varepsilon_1, \varepsilon_2, m_1, m_2 \quad \text{- fit parameters}$$

 $\left\langle E'(c_b) \right\rangle$  — average value and var. of energy/mult.  $D(E'(c_b))$  from the rec. model data

$$\langle E \rangle = \varepsilon_1 \langle E'(c_b) \rangle, \quad D(E) = \varepsilon_2 D(E'(c_b))$$
  
 $\langle M \rangle = m_1 \langle M' \rangle, \quad D(M) = m_1^2 D(M') + m_2 \langle M' \rangle$ 

 $\left\langle E'(c_b) \right\rangle$ ,  $D(E'(c_b))$  - can be approximated by polynomials

### Dependence of the average value and variance on centrality





Averages and variances can be fited by a smooth function.

## The fluctuation of energy and multiplicity at fixed impact parameter



It is possible to find such a rotation angle of the system that cov(x, y) = 0

$$x = \cos(\alpha)E + \sin(\alpha)M,$$

$$y = -\sin(\alpha)E + \cos(\alpha)M$$

$$\alpha = \arctan\left(\frac{2\sqrt{D(E)D(M)}R(E,M)}{D(E) - D(M)}\right)$$

$$G_{2D}(E_{FH}, M_{ch}, \langle E \rangle, \langle M \rangle, D(E), D(M), R) = G(x, \theta_x, k_x) \cdot G(y, \theta_y, k_y)$$



The distribution of energy and multiplicity at a fixed impact parameter is well described by the gamma distribution

#### 2D fit results





The fit function qualitatively reproduces the multiplicity-energy correlation from FHCal

### **Energy distributions in FHCal**





Good agreement between fit and data for the area below the anchorpoint

### The results of the fit signals from the calorimeter and hodoscope





Good agreement of fit results

### Centrality determination using an forward calorimeter and hodoscope





The K-means method allows to divide a two-dimensional distribution into centrality classes. In order to correctly apply the class boundaries, it is necessary to match the simulation results with the experiment

#### Comparison with Glauber MC fit







There is agreement within 5%.

### **Summary and Outlook**



- Both the Bayesian inversion and MC Glauber methods provide consistent results
- The Bayesian inversion method was applied to the BM@N data:
  - Multiplicity-based and 2D approaches using  $Q^2_{Hodo}$  and  $E_{FHCal}$  describe experimental data reasonably well.
- In the future, it is planned to study systematics uncertainties using different models (DCM, UrQMD, etc.) and observables (GEM hit multiplicity, etc.)

### Thank you for your attention!