

Collective flow harmonics correlations analysis for model data at Nuclotron-NICA energies

N. Bikmetov, P. Parfenov, A. Taranenko (JINR LHEP, NRNU MEPhI)

The XXVI International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics"

15-20 September, 2025

The work was funded by the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental and applied research at the NICA (JINR) megascience experimental complex" FSWU-2025-0014

Relativistic heavy-ion collisions

- The Goal: Explore the high baryon density region of the QCD phase diagram to search for first-order phase transition and the Critical Point (CEP).
- MPD experiments at NICA will collide heavy ions at center-of-mass energies $\sqrt{s_{NN}} = 2.4 11.5$ GeV.
 - This fills the gap between beam energy scans.
- Low beam energies:
 - Intermediate temperature (T);
 - High net-baryon density;
 - Analogous to the conditions found in the inner structure of neutron stars and neutron star mergers.

Bikmetov Nikita 1/16

Anisotropic flow

- Flow describes anisotropy in particle emission;
- Sensitive to early pressure gradients and **Equation of** State (EoS)

The anisotropic flow is quantified as:

$$rac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_n)]$$

Extraction of azimuthal moments v_n:

$$v_n = \langle \cos[n(\phi - \Psi_n)] \rangle$$

Poskanzer & Voloshin, Phys. Rev. C 58, 1671 (1998)

STAR Collaboration, Phys. Lett. B 827 (2022) 137003.

At NICA energies (2 ÷ 11 GeV), both v_1 and v_2 change strongly with √sNN

Bikmetov Nikita 2/16

Sensitivity of anisotropic flow to the Equation of State (EoS)

- Anisotropic flow is a sensitive probe
 of the pressure gradient built up in the
 early, high-density stage of the
 collision.
 - Stronger flow = Stiffer EoS (higher pressure)
 - Weaker flow = Softer EoS (lower pressure)
- The discrepancy in the interpretation:
 - Directed flow $\mathbf{v_1}$ suggests a soft EoS ($K_0 \approx 210 \text{ MeV}$).
 - Elliptic flow v_2 suggests a stiff EoS ($K_0 \approx 380 \text{ MeV}$).

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002)

$$K_0 = 9
ho_0^2 rac{\partial^2 (E/A)}{\partial
ho^2} igg|_{
ho=
ho}$$

 $v_2 \equiv \langle \cos(2(\varphi - \Psi_{RP})) \rangle$

Bikmetov Nikita 3/16

HADES results on anisotropic flow correlations

- Show high sensitivity to EoS of higher flow harmonics;
- Provide an insight on flow harmonics being

originated from v₂ (?) Reichert, T., & Aichelin, J. arXiv:2411.12908 (2024)

It is interesting to investigate **the flow harmonics correlations** for **stricter EoS** constraints

HADES, Eur. Phys. J. A 59, 80 (2023).

Bikmetov Nikita 4/16

Dataset and applied cuts

Dataset:

- Model: JAM v1.9
- Equation of state: MD2
- Collision system: Au+Au
- Energy: √sNN = 2.0 ÷ 4.5 GeV
- Statistics per energy: ~20÷40M

Event selection:

Multiplicity-based centrality

Particle selection

- Protons (pdg cut)
- |y| < 0.5
- pT > 0.5 GeV/c

Bikmetov Nikita 5/16

Centrality determination

- **Centrality determination** method: Bayesian inversion method (**Γ-fit**)
- Centrality was determined for charged particle multiplicity (Nch);
- Further centrality classes cuts are applied by selecting events in range of Nch;

 Γ -fit results for $\sqrt{sNN} = 2.5 \text{GeV}$

Bikmetov Nikita 6/16

v_n dependence on y_{cm} comparison

- For correct comparison,
 assuming that 20-30%
 centrality is equal to
 6 < b < 9 fm.
- Results for v₁, v₂ and v₃ are in good agreement with HADES data;
- •JAM predicts **higher v**₄ signal than HADES data.

 v_1 , v_2 , v_3 and v_4 distributions over y comparison with HADES data

HADES, Phys. Rev. Lett. 125, 262301 (2020)

Bikmetov Nikita 7/16

v_n dependence on p_T comparison

- For correct comparison, assuming that 20-30% centrality is equal to
 6 < b < 9 fm;
- Results for v₁, v₂ and v₃
 are in agreement at
 different pt ranges with
 HADES data;

 v_1 , v_2 , v_3 and v_4 distributions over p_T comparison with HADES data

HADES Collaboration, Phys. Rev. Lett. 125, 262301 (2020)

Bikmetov Nikita 8/16

v_{2,event} distribution comparison

- v₂ terms were averaged in one collision event;
- •JAM v_{2,event} distribution is **narrower**;
- Mean values are approximately equal.

HADES Work in Progress

Centrality 20-309

dN/dv_{2,event}

1.5

0.5

B. Kardan, EMMI EOS Workshop II (2024).(URL)

Bikmetov Nikita 9/16

$v_1/dy|_{y=0}$ vs $v_{2,event}$ classes

v₁ distribution for v_{2.event} classes for JAM model

Slopes comparison for \boldsymbol{v}_1 in $\boldsymbol{v}_{2,\text{event}}$ classes

For JAM the slope dependency of v₁ on v_{2,event} is much steeper

B. Kardan, EMMI EOS Workshop II (2024).(URL)

Bikmetov Nikita 10/16

$v_3/dy|_{y=0}$ vs $v_{2,event}$ classes

•v₃/dy|_{v=0} dependency on v2,event is in **good agreement** with **UrQMD Hard EoS**

B. Kardan, EMMI EOS Workshop II (2024).(URL)

Bikmetov Nikita 11/16

$v_4|_{y=0}$ vs $v_{2,event}$ classes

 $v_4|_{v=0}$ distribution for $v_{2,event}$ classes for JAM model

 $v_4|_{v=0}$ comparison in $v_{2,event}$ classes

 $\bullet v_4|_{y=0}$ dependency of $v_{2,event}$ from JAM is in agreement for $v_{2,event} > -0.05$ with UrQMD Hard EoS, however is stronger than HADES

B. Kardan, EMMI EOS Workshop II (2024).(URL)

Bikmetov Nikita 12/16

Flow harmonics correlations in centrality classes

Slopes comparison for v_1 in $v_{2,\text{event}}$ classes in different centrality classes

Slopes comparison for v_3 in $v_{2,\text{event}}$ classes in different centrality classes

- • $dv_1/dy|_{v=0}$ has stronger dependency on centrality than the dv_3/dy_0
- $\bullet dv_1/dy|_{v=0}$ vs $v_{2,event}$ has the **strongest** correlation at **midcentral** (10-40%)

Bikmetov Nikita 13/16

Flow harmonics correlations at different energies

Slopes comparison for v_1 in $v_{2,event}$ classes at $\sqrt{s_{NN}} = 2.0 \div 4.5 \text{ GeV}$

Slopes comparison for v_3 in $v_{2,event}$ classes at $\sqrt{s_{NN}} = 2.0 \div 4.5 \text{ GeV}$

- • $dv_1/dy|_{y=0}$ decreases with the beam energy;
- •The slope of v₁ and v₃ correlation with v_{2,event} strongly depends on the beam energy;

Bikmetov Nikita 14/16

Flow harmonics at different energies

Slopes comparison for v1 in v2, event classes at $\sqrt{s_{MN}} = 2.0 \div 4.5 \text{ GeV}$

Slopes comparison for v3 in v2, event classes at $\sqrt{s_{NN}}$ = 2.0 ÷ 4.5 GeV

- • $dv_1/dy|_{v=0}$ seems to hit a **plateau** around $\sqrt{s_{NN}} \approx 2.2$ GeV;
- $\bullet dv_3/dy|_{v=0}$ is asymptotically approaches 0 with energy increase.

Bikmetov Nikita 15/16

Summary

- Correlations of v_1 , v_3 , v_4 with $v_{2,event}$ were studied using JAM for Au+Au collisions at $\sqrt{sNN} = 2.0 \div 4.5$ GeV for hard EoS (MD2):
 - \circ Comparison with similar data from UrQMD and HADES shows that v_3 slope and v_4 at midrapidity in agreement with UrQMD hard EoS;
 - v₁ slope is steeper than in HADES and UrQMD results.
 - Stronger centrality dependence observed for v1 slope than for v3 slope.

• Energy dependence:

- \circ v₁ slope decreases with energy, v₃ slope approaches zero.
- v_1 slope hits a plateau around $\sqrt{s_{NN}} \approx 2.2$ GeV (coincidence?)

To do:

- Investigate event-wise correlation dependencies for different EoS and different models.
- Implementation of realistic v_n correlation measurements using reconstructed data at the MPD (feasibility study)

Bikmetov Nikita 16/16

Backup Slides

Bikmetov Nikita 16/16

Harmonic flow correlations

- v₁ and v₂ evolve rapidly with time → complex behavior
- Correlations (v_n−v₂) formed at early stage → more robust to late dynamics
- Harmonic flow correlations allows for more precise EoS extraction from data
- Such correlations are largely unexplored → motivation for model studies

The directed and elliptic flow coefficient flow coefficient in the whole phase space at time t and of the nucleons emitted at time t + Δt . Taken from [3]

[3] - Reichert, T., et al., Phys. Lett. B 841 (2023) 137947.

Bikmetov Nikita 4/16

Bayesian inversion method (Gamma-fit)

Charged particle multiplicity and impact parameter are related by probability distribution as:

$$P(N_{ch}|b) = \frac{1}{\Gamma(k)\theta^{k}} N_{ch}^{k-1} e^{-N_{ch}/\theta}$$
 [1,3]

- c_b cumulative probability distribution written as: $c_b = \int_0^\infty P(b')db'$.
- Mean multiplicity for centrality class based on impact parameter:

$$\langle N_{ch} \rangle = N_{knee} \exp \left(\sum_{i=1}^3 a_i (c_b)^i \right)$$

- 5 parameters: N_{knee} , θ , a_1 , a_2 , a_3 ;
- Fit function for multiplicity distribution:

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b) dc_b$$

Impact parameter for given multiplicity range at certain centrality class:

$$P(b|N_{ch}^{low} < N_{ch} < N_{ch}^{high}) = p(b) \frac{\int_{N_{ch}^{low}}^{N_{ch}^{high}} P(N'_{ch}|b) dN'_{ch};}{\int_{N_{ch}^{low}}^{N_{ch}^{high}} P(N'_{ch}) dN'_{ch};}$$

2 main steps of gamma-fit:

- 1) Fit multiplicity distribution from data with $P(N_{ch})$;
- 2) Construct impact parameter distribution using Bayes theorem.

Parfenov et al., Particles 4, 275 (2021). https://doi.org/10.3390/particles4020024