

A Monte Carlo simulation of the MPD experiment performance for strange particle decay study

D. Suvarieva ¹, V. Kolesnikov ¹, V. Vasendina ¹

and

A. Zinchenko ¹ (for the MPD Collaboration)

1– Joint Institute for Nuclear Research Dubna, Moscow region, Russia

Outline

- Motivation and Physics Goals
 - Why study strange particles in MPD fixed-target mode
- ➢ Overview of the Multi-Purpose Detector (MPD) FXT setup
 - Main subsystems relevant for strange particle reconstruction
- Analysis Methodology
 - Track reconstruction, PID and Topological Cuts (TC)
- > Strange Particle Resonstruction MPD (Collider & FXT Mode)
 - $\Lambda \rightarrow p + \pi$
 - $-\Omega^- \rightarrow \Lambda + \pi^-$
 - $-\Xi^- \rightarrow \Lambda + K^-$
 - $\mathbf{K}_{s}^{0} \rightarrow \pi^{+} + \pi^{-}$
- \triangleright Efficiency and p_T Spectra
 - Centrality dependence & Comparison of generated vs reconstucted
- > Summary and Outlook

Physics Motivation

- Significance of Strange Particles: Strange hadrons (Λ, K_s^0, Ω) are key probes of the properties of nuclear matter. They serve as indicators of the collision dynamics and the hadronization processes.
- ✓ **Astrophysical Relevance:** They also play important role in understanding matter inside neutron stars.
- ✓ **Quantum Chromodynamics (QCD):** Strangeness provides information on the confinement mechanism and the transition between quark gluon plasma and hadron gas.
- Experimental Relevance: Reconstruction of their weak decays is a valuable test of detector performance.

The Goal of This

Study

- ✓ Simulation of MPD performance for strange particle reconstruction in fixed-target mode:
 - signal extraction
 - efficiency estimation
 - \circ p_T-spectra for different centralities

Multi – Purpose Detector General View

Time-Projection Chamber (TPC): Main tracking detector

Time-Of-Flight (TOF): Particle identification via time-of-flight

Electromagnetic Calorimeter (Ecal): Measurements of photons and electrons

Forward Hadron Calorimeter (FHCal): Measures centrality and event plane

Forward Detector: Provides fast trigger for TOF

Fixed-Target Mode: Wire target at z = -85 cm, diameter

50 um, wire is shifted by **1.4 c**m upwards in Y.

All subdetectors are located inside a superconducting solenoid

http://mpd.jinr.ru/mpd/

Decay Reconstruction Method Topological Cuts (TC)

- Primary vertex(PV): collision point
- Second vertex(**V0**): decay of **∧**
- dca: distance of closest approach between tracks & to PV
- Decay lenght(path): distance between PV and V⁰

Maximization of significance: Significance is defined as $S/\sqrt{(S+B)}$, where S and B are the total numbers of signal and background combinations inside $\pm 2\sigma$ interval around the invariant mass peak position (σ is taken from Gaussian fit of the peak).

Data Set and Analysis Framework

✓ Event Generation & Simulation

- **Generators:** UrQMD + Geant-4, Min.bias (b = 0-15 fm)
- System: Bi+Bi @ 9.2 GeV for Collider Mode & Xe+W @ 2.5 GeV for FXT Mode
- Statistics: 15M, 20M and 50M events
- **Detectors setup:** MPD in Collider Mode & MPD in Fixed Target Mode

✓ Reconstruction & Selection

- Track reconstruction: two-pass Kalman filter with track seeding using outer hits (1st pass) or leftover inner hits (2nd pass)
- **Track acceptance criterion:** $|\eta|$ < 1.3, NTPC_hits ≥ 10
- **Particle Identification:** dE/dx in TPC & m^2 in TOF
- Analysis methods: Topological Cuts (TC)

Strange Particle Reconstruction in Collider Mode

Clear signals in collider mode validate the reconstruction method and confirm its robustness for futher FXT studies.

Strange Particle Reconstruction in Collider Mode

Collider mode results demonstrate successful reconstruction of multistrange hyperons, validating the method despite lower efficiencies for complex decays.

Invariant Mass Λ in MPD FXT Mode

Variable	Cut Value
χ^2_{π}	> 25
χ_p^2	> 11
$\chi^2_{ m V0}$	< 10
dca	< 0.8
path	> 3
angle	< 0.04

 Λ hyperons are clearly reconstructed in FXT mode, with good signal significance and stable efficiency, confirming the reliability of topological selection cuts.

A Phase Space: Model vs Reconstruction

10

A Phase Space: Model vs Reconstruction

A Reconstruction Efficiency in Centrality Classes

Reconstruction efficiency increases with p_T for all centralities.

Invariant p_T -spectrum of Λ in Centrality Classes

Generated and reconstructed Λ spectra are in good agreement for all centralities.

Invariant Mass K⁰ in MPD **FXT** Mode

Variable	Cut Value
$\chi^2_{\pi^-}$	> 12
$\chi^2_{\pi^+}$	> 14
$\chi^2_{ m V0}$	< 11
dca	< 1
angle	< 0.15

Applied topological cuts ensure good signal significance and efficiency.

K_s Phase Space: Model vs Reconstruction

15

K⁰_s Phase Space in Centrality Intervals

K_s Reconstruction Efficiency in Centrality Classes

 K_s^0 reconstruction follows the Λ trend, reaching ~14% efficiency.

Invariant p_T-spectrum of K_s⁰ in Centrality Classes

Summary

- The MPD detector shows good performance in FXT mode for strange particle studies using the same reconstruction procedure as for the collider mode.
- ightharpoonup Invariant mass and p_T -spectra are reliably reconstructed, showing agreement with generated distributions.
- The analysis methodology, validated in Collider Mode is proven in FXT conditions.
- These results confirm the feasibility of strange particle studies with MPD in the FXT setup and provide a solid basis for future physics measurements.

Thank you for your attetion!