Forward neutrons from ¹²C-¹²C and ⁴⁰Ca-⁴⁰Ca collisions in the SPD experiment as a probe of nucleon-nucleon correlations.

Aleksandr Svetlichnyi^{1,2,*)},
Savva Savenkov^{1,2)},
Igor Pshenichnov^{1,2)}
INR RAS, ²⁾MIPT(NRU)
*)aleksandr.svetlichnyy@phystech.edu

Motivation

- Studies of collisions of non-polarized light nuclei, ¹²C and ⁴⁰Ca, are also considered as a possible extension of the SPD research program¹⁾
- Zero-degree calorimeters (ZDC) to detect forward neutrons are considered for the first stage of the SPD experiment²⁾.
- The short range correlations between pair of neutrons can be related to the nuclear symmetry energy³⁾
- The production of spectator neutrons is affected by the initial cluster structure of ¹⁶O⁴⁾. Alpha-clustering is also predicted for ¹²C⁵⁾
- Can we probe the neutron correlations in ¹²C and ⁴⁰Ca via forward neutrons detected by ZDCs?
- 1) V. V. Abramov et al. Phys. Part. Nucl. 52 (2021) 1044
- 2) "NICA Bulletin" Nº14
- 3) S.Gandolfi et al., Phys. Rev. C 85 (2012), 032801
- 4) S. A. et al. Physics 5 (2023), 381
- 5) Y.Kanada-En'yo. Progress of Theoretical Physics 121 (2009), 895

Outline

- Our model Abrasion-Ablation Monte Carlo for Colliders (AAMCC)
- The nucleon correlations in ¹²C and ⁴⁰Ca nuclei
- Neutron production in relativistic ¹²C–¹²C and ⁴⁰Ca– ⁴⁰Ca collisions, to be considered:
 - The cross-section of the production of a given number of neutrons
 - The dependence of the average neutron multiplicity on the event centrality

Abrasion-Ablation Monte Carlo for Colliders

- Nucleus-nucleus collisions are simulated by means of the Glauber Monte Carlo model ¹⁾. Non-participated nucleons form spectator matter (prefragment)
- Excitation energy of prefragment is calculated by parabolic ALADIN approximation ²⁾ tuned to describe the data for light nuclei.
- Decays of prefragments are simulated as follows:
 - pre-equilibrium decays modelled with MST-clustering algorithm³⁾
 - Statistical Multifragmentation Model (SMM)
 from Geant4 v10.4⁴⁾
 - Fermi break-up model from Geant4 v9.2 4) $arepsilon^*=arepsilon_0\sqrt{1-c_0rac{A_{pf.}}{A}}$
 - Weisskopf-Ewing evaporation model from Geant4 v10.4 ⁴⁾
- 1) C. Loizides, J.Kamin, D.d'Enterria Phys. Rev. C 97 (2018) 054910
- 2) A. Botvina et al. NPA 584
- 3) R. Nepeivoda, et al., Particles 5 (2022) 40
- 4) J. Alison et al. Nucl. Inst. A 835 (2016) 186

Nucleon correlations in 12C and 40Ca

- Correlations between nucleons is driven by the internuclear potential that involves two, three and higher number of nucleons¹⁾
- Binary nucleon-nucleon correlations and alphaclustering can be used as a probe of nucleons interaction potential¹⁾
- A study suggests that the ¹²C nucleus has three alphaclusters arranged into a triangle²⁾
- In contrast, there is no evidence of the alpha-clustering in ⁴⁰Ca

- 1) L.Frankfurt et al. Int. J. Mod. Phys. A 23, 2991 (2008)
- 2) T.Furuta et al, Phys. Rev. C 82, 034307 (2010)

Short range nucleon-nucleon correlations (SRC)

- Following the papers ^{1,2)}, SRC include the nucleon-nucleon repulsion caused, in particular, by Pauli principle.
- To account for SRC a method based on Monte Carlo Markov Chain²⁾ was implemented. Two nucleon-nucleon correlation functions can be used: Gaussian or step-like.

 The number of participants is slightly increased with accounting for SRC ¹⁾. The deuterium production is enhanced in Pb-Pb collisions ³⁾. One can expect a similar effect in C-C

and Ca-Ca collisions.

- 1) M.Alvioli et al, PRC 85 (2012) 034902
- 2) M. Alvioli et al, Phys. Lett. B 680 (2009) 225
- 3) N.Kozyrev et al., Eur. Phys J. A 58 (2022) 184

SRC at SPD

- A minimal configuration of the SPD includes a pair of neutron ZDC
- Along with it, other detector system can be used for the centrality determination

• There is a well-established technique to measure the multinucleon events with ZDC with the limited

- 1) U.Dmitrieva, I.Pshenicnov, NIM A, 906, 114 (2018)
- 2) S.Acharaya et al., Phys. Rev. C, 111, 054906 (2025)

Cross section of the production of a given number of neutrons from ¹²C

No significant difference between the cross-sections obtained with two parametrisations of SRC

Cross section of the production of a given number of neutrons from ⁴⁰Ca

No significant difference between the cross-sections obtained with two parametrisations of SRC

Average neutron multiplicity

A slight increase in the multiplicity for the more peripheral events is observed for both ¹²C and ⁴⁰Ca

Probabilities to have same number of neutrons on both sides

Black lines represent squares of one-side distributions

A clear contribution of the correlations for the gaussian SRC is seen

Probabilities to have same number of neutrons on both sides

Black lines represent squares of one-side distributions N_n

Clear contribution of the correlations for both step-like and gaussian SRC is seen in contrast to ¹²C

Neutrons from clustered ¹²C

Following Ref. 1, the step-like parametrization of the SRC were considered

As for ¹⁶O, accounting for the alpha-clusterisation increases the average neutron multiplicity, especially in the most peripheral events

Summary

- Projectile fragmentation has been studied in fixed target experiments with beams of light nuclei. SPD at NICA provides a unique possibility to study fragmentation of both colliding nuclei, in particular, spectator neutrons.
- As calculated, the yields of spectator neutrons are sensitive to the presence of alpha-clusters in ¹²C, but not to the SRC in ¹²C and ⁴⁰Ca
- In contrast, the correlation between the spectator nucleons from the both colliding nuclei provides information on neutron-neutron correlations in colliding nuclei.
- The yields of neutrons in the events with the same number of neutrons on both sides are sensitive to the specific parametrisation of the SRC for both ¹²C and ⁴⁰Ca

To conclude, an artists view of the carbon nuclei fragmentation

Liubov Popova, Folio from 5 x 5 = 25: Vystavka zhivopisi, 1921