

HEP: Directions, Status and Plans

Major Questions in High Energy Physics

- The Standard Model doesn't explain:
 - why the Higgs boson exists.
 - why the Higgs boson has the mass that it does. The Higgs turned out to be much less massive than predicted (a quadrillion times)
- We did not find a way how to add gravity to the Standard model.
- Where did all the antimatter go after the big bang?
 - ♦ Known CP violation does not look sufficient
- Why lepton number is not conserved in neutrino oscillations?
 - \bullet Neutrino mass = 0 in standard model
- Is neutrino and antineutrino the same particle?
- What are the dark matter and dark energy?
 - ♦ WIMPs, axions
- Does the supersymmetry exist?

• • •

■ LHC has been dominating the high energy physics for more than a decade; and it will continue to dominate in feasible future

Major Goals & Directions of High Energy Physics

The goal is to determine the most fundamental building blocks of matter and to understand the interactions between these particles

- Presently the high energy physics extends far beyond the accelerator based HEP
 - ♦ Cosmology & Astrophysics
 How our universe was created and which laws determine its expansion?
 - High resolution digital map of the universe observed at different wave lengths
 - Gravitational waves
 - ♦ Detection of radiation coming from space
 - v Discovery of neutrino mass difference (Nobel prize)
 - ν Highest observed energy 3×10^{20} eV (far beyond our accelerators)
 - γ Microwave background radiation
 - γ Search for dark matter and dark energy
 - e[±], p[±], nuclei, ...
- The strongest limitation on the neutrino mass came from analysis of the microwave background radiation and universe expansion

Major Directions of Accelerator Based HEP

- LHC is a leader in collider-based physics
 - ◆ Finding physics beyond the standard model
 - Higher energy and luminosity
 - Improvement of detector resolution (space and time)
 - Detailed measurements of Higgs boson
 - FCC is planned as the next step of the CERN program
- Mixing and oscillations of neutrinos
 - ♦ New generation machines come at the end of this decade
 - DUNE (Fermilab) and Hyper-Kamiokande (Institute for Cosmic Ray Research of University of Tokyo & JPARC & KEK)
 - ♦ The goal: finding CP violation in neutrino sector and neutrino mass hierarchy
- Physics beyond standard model
 - g-2 experiment (Fermilab) difference disappears with more data
 - μ-to-e experiment (Fermilab, the Paul Scherrer Institute (Zurich))
 - lepton number violation is observed in neutrino sector

Colliders

Collision Energy and Luminosity

- Collision energy
 - ◆ Gain in collision energy for ultra-relativistic particles
 - ♦ One particle stationary:

$$E_{cm} = \frac{1}{2}E \xrightarrow{\text{ultra relativistic}} E_{cm} \approx \sqrt{2Emc^2}$$

♦ Both particles move:

$$E_{cm} = 2E$$

(120 times gain for the LHC)

- Luminosity
 - ♦ Number of events in collisions:

$$\frac{dN}{dt} = L\sigma$$

- The total cross section for Higgs boson production at the LHC operating at s=13 TeV is 43 pb = $5 \cdot 10^{-35}$ cm².
 - \Rightarrow At luminosity of 10^{34} cm⁻²s⁻¹ the LHC makes 1 Higgs every 2 s
- ♦ Higgs discovery potential: Tevatron versus LHC: $(E/E)^4(L/L)=6^430\approx4\cdot10^4$
- Particle physics detectors want constant luminosity!

Luminosity

$$N_{\rm exp} = \sigma_{\rm exp} \cdot \int \mathcal{L}(t) dt.$$

For (same size) Gaussian bunches:

$$\mathcal{L} = f_{\text{coll}}$$

density + const.

$$\mathcal{L} = f_{\rm coll} \frac{N_1 N_2}{4\pi \sigma_x^* \sigma_y^*} - \text{Fermilab}$$

USPAS'22 | Co

26

Types of Colliding Beams Facilities

■ Since 60's colliders have been the major instrument in the particle physics

Colliders Landscape

- 61 years since 1st collisions
 - ♦ Spring 1964 AdA and VEP-1
- 31 operated since
- 7 in operations now
 - ◆ S-KEKB, VEPP-2000, VEPP-4M, BEPC, DAFNE
 - ♦ LHC, RHIC
- 1 under construction
 - ♦ NICA (JINR)
- One in a project phase
 - ◆ EIC (BNL)
- Far plans
 - ♦ Higgs/Electroweak factories
 - ILC
 - FCC: e⁺e⁻
 - Frontier ($E >> E_{LHC}$)
 - FCC: pp

V. Shiltsev and F. Zimmermann: Modern and future colliders

	Species	E_b , GeV	C, \mathbf{m}	\mathcal{L}_{peak}^{max}	Years
AdA	e^+e^-	0.25	4.1	$\frac{\mathcal{L}_{peak}}{10^{25}}$	1964
VEP-1	e^-e^-	0.16	2.7	5×10^{27}	1964-68
CBX	e^-e^-	0.5	11.8	2×10^{28}	1965-68
VEPP-2	e^+e^-	0.67	11.5	4×10^{28}	1966-70
ACO	e^+e^-	0.54	22	10^{29}	1967-72
ADONE	e^+e^-	1.5	105	6×10^{29}	1969-93
CEA	e^+e^-	3.0	226	0.8×10^{28}	1971-73
ISR	pp	31.4	943	1.4×10^{32}	1971-80
SPEAR	e^+e^-	4.2	234	1.2×10^{31}	1972-90
DORIS	e^+e^-	5.6	289	3.3×10^{31}	1973-93
VEPP-2M	e^+e^-	0.7	18	5×10^{30}	1974-2000
VEPP-3	e^+e^-	1.55	74	2×10^{27}	1974-75
DCI	e^+e^-	1.8	94.6	2×10^{30}	1977-84
PETRA	e^+e^-	23.4	2304	2.4×10^{31}	1978-86
CESR	e^+e^-	6	768	1.3×10^{33}	1979-2008
PEP	e^+e^-	15	2200	6×10^{31}	1980-90
$\mathrm{S}par{p}\mathrm{S}$	$par{p}$	455	6911	6×10^{30}	1981-90
TRISTAN	e^+e^-	32	3018	4×10^{31}	1987-95
Tevatron	$p\bar{p}$	980	6283	4.3×10^{32}	1987-2011
SLC	e^+e^-	50	2920	2.5×10^{30}	1989-98
LEP	e^+e^-	104.6	26659	10^{32}	1989-2000
HERA	ep	30 + 920	6336	7.5×10^{31}	1992-2007
PEP-II	e^+e^-	3.1 + 9	2200	1.2×10^{34}	1999-2008
KEKB	e^+e^-	3.5 + 8.0	3016	2.1×10^{34}	1999-2010
VEPP-4M	e^+e^-	6	366	2×10^{31}	1979-
BEPC-I/II	e^+e^-	2.3	238	10^{33}	1989-
$DA\Phi NE$	e^+e^-	0.51	98	4.5×10^{32}	1997-
RHIC	p, i	255	3834	2.5×10^{32}	2000-
LHC	p, i	6500	26659	2.1×10^{34}	2009-
VEPP2000	e^+e^-	1.0	24	4×10^{31}	2010-
S-KEKB	e^+e^-	7+4	3016	$8 \times 10^{35} *$	2018-

Colliders: Energy

Colliders: Luminosity

FIG. 3. Luminosities of particle colliders (triangles are lepton colliders and full circles are hadron colliders, adapted from [37]). Values are per collision point.

Some Basic Concepts of Accelerator Physics

Emittance

- Two sides of the emittance concept
 - ♦ Liouville theorem
 - ◆ Action Single particle emittance
- As a particle returns to the same point on subsequent revolutions, it will map out an ellipse in the phase space
- Emittance = $\sigma_x \sigma_\theta$ (σ_θ – local momentum spread)

- Normalized emittance: $\varepsilon_n = \varepsilon \gamma \beta$ adiabatic invariant
- Beam size:

$$\sigma_{x,y} = \sqrt{\frac{\varepsilon_n \cdot \beta_{x,y}}{\gamma}}$$

■ Luminosity $\sim 1/\epsilon$

$$\varepsilon = \sigma_{x} \sigma_{\theta 1}$$

$$\sigma_{x} = \sqrt{\varepsilon \beta_{x}}$$

$$\sigma_{\theta 1} = \sqrt{\frac{\varepsilon}{\beta_{x}}}$$

$$\sigma_{\theta} = \sqrt{\frac{\varepsilon \left(1 + \alpha_{x}^{2}\right)}{\beta_{x}}}$$

$$\alpha_x = -\frac{1}{2} \frac{d\beta}{ds}$$

Collider Spot Size

- lacksquare β^* must be equal or larger than σ_z ('hourglass effect')
 - ◆ with exception of crab-waist (e+e- colliders)
- Quadrupole aperture must be respected

Betatron Oscillations, Tune

Particle trajectory

 As particles go around a ring, they will undergo a number of betatron oscillations v (sometimes Q) given by

$$v = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

 This is referred to as the "tune"

We can generally think of the tune in two parts:

Integer: 64.31 Fraction: magnet/aperture optimization Stability

Longitudinal Motion: Phase Stability

- Particles are typically accelerated by radiofrequency ("RF") structures.
- Stability depends on particle arrival time relative to the RF phase.
 - ◆ Time of arrival depends mostly on the energy deviation relative to "the reference (central) particle"

Luminosity Evolution

$$L = \gamma f_B \frac{N_1 N_2}{4\pi \beta^* \varepsilon} H(\sigma_s / \beta^*)$$

- Factors change in time: $L(t) = C \frac{N_1(t)N_2(t)}{\varepsilon(t)} H(t)$
- Therefore, in the absence of cooling the lifetime

$$\tau_L^{-1} = \frac{dL(t)}{L(t)dt} = \tau_{N1}^{-1} + \tau_{N2}^{-1} - \tau_{\varepsilon}^{-1} + \tau_H^{-1}$$

LHC luminosity plot

Electrons versus protons

Electrons

- ♦ (+) Point-like objects
 - => the entire energy may go to creation of a particle-of-interest
- ♦ (+) Well-determined energy
 - => better resolution; in particular, for narrow resonances
- ♦ (+) Smaller backgrounds
 - => Easier to separate events from backgrounds => less expensive detector
- (-) Energy is limited by SR ($dE/dt \propto E^4$)
 - In LEP (LHC tunnel, C=26.7 km) operating at E=104 GeV the beam was losing 3% of its energy per turn

Protons

- ◆ (-) Large nuclear cross sections => large background
- (-) Quarks carry out a fraction of energy => effective energy = $\sim 1/6$ of total (LHC may create particles with $\sqrt{s} \le 2$ GeV)
- ◆ (-) Wide PDF (parton distribution function) => poor knowledge of initial energy of collisions
- ♦ (++) May operate at very high energy: LHC E_{max}(protons)=6.8 TeV
- ♦ (+) Much larger cross sections for creation of hadrons. For creation of B-mesons the cross section in LHCB is ~4 order of magnitude higher than in KEKB

Electrons versus protons (continue)

- Development of detector technology in the last ~50 years proved that in a proton collider a modern detector can deal with backgrounds even at luminosity few units of 10³⁴ cm⁻²s⁻¹
- If built, all other types of colliders have to be competitive to the proton colliders (i.e. to the LHC) in luminosity and/or energy
- ILC International Linear collider
 - ◆ Very expensive, looks like cannot not reach the design luminosity for reasonable time. SLC did not get the design luminosity (4 orders lower ILC) after 10 years of commissioning
 - Looks like is coming too late with too little E & L, compared to LHC
 - ♦ FCC e+e- looks much better choice CERN's choice
 requires ~doubling of CERN budget
- Muon collider looked as a very promising choice
 - ◆ Point-like particles, small SR but muons survive only about 1000 turns => cannot compete with LHC in the luminosity
 - ♦ Some people still believe that we can built one

Present and Future Colliders

Present Hadron Colliders

RHIC (BNL, Brookhaven)

C=3.84 km,

 $E_{max}(protons)=255 \text{ GeV}$

RHIC is our main competitor

LHC (CERN)

C=26.7 km, E_{max}(protons)=6.8 TeV

Colliders That Will Be

EIC (BNL, Brookhaven)

e⁺e⁻: Rings vs Linacs

Damping Rings (2)

Existing Linac
Electron Booster

Electron Gun

Page | 24

■ SLC – the only linear collier built up to now

HEP & Colliders & NICA, V. Lebedev, August 26, 2025

ILC (e⁺e⁻)

 $\sqrt{s} = 500 \to 1000 \, \text{GeV}$

C=30 -> 50 km

Polarized electrons and positrons

Muon Collider

- Great challenge in accumulation and cooling muons
 - Multimegawatt proton driver
 - ♦ Ionization cooling
- Higgs factory: $L\approx 10^{29}$ cm⁻²s⁻¹ doable, $L\approx 10^{32}$ cm⁻²s⁻¹ needed,
 - ♦ Expected Higgs width 4.1 MeV, W/M≈ $3\cdot10^{-5}$ ($\sqrt{s} \le 125$ GeV, s-channel)

Some Important Accelerator Technologies

Highest Energy = Highest Field SC Magnets

4.5T

5.3T

3.5T

LHC, 15 m, 56 mm 1276 dipoles

8.3T

HERA, 9 m, 75 mm 416 dipoles RHIC, 9 m, 80 mm 264 dipoles

Tevatron, 6 m, 76 mm 774 dipoles

4.5 K He, NbTi + warm iron small He-plant

NbTi cable cold iron Al collar

NbTi cable simple & cheap

NbTi cable
2K He
two bores
Fermilab

12 USPAS'22 | Colliders vs1-2

Electron cooling

- Invented in 1966 by A. M. Budker
 - ◆ In the beam frame heavy particles come into equilibrium with electron gas
- Tested experimentally in BINP, Novosibirsk, in 1974-79 at NAP-M
 - ♦ 35 MeV electron beam (65 MeV protons)

♦ Magnetized electron cooling

- Many installations since then, up to 300 kV electron beam (GSI, Darmstadt)
- FNAL 4.3 MeV cooler next step in technology

Electron Cooling at FNAL

- Fermilab made next step in the electron cooling technology
- Main Parameters
 - ♦ 4.34 MeV pelletron
 - ♦ 0.5 A DC electron beam with radius of 6 mm
 - ♦ Magnetic field in the cooling section 100 G

♦ Interaction length – 20 m (out of 3319 m of Recycler

Stochastic Cooling

- Invented in 1969 by Simon van der Meer
- Naïve cooling model
 - 90 deg. between pickup and kicker $\delta\theta = -g\theta$

Averaging over betatron oscillations yields

$$\delta \overline{\theta^2} = -\frac{1}{2} 2g \overline{\theta^2} \equiv -g \overline{\theta^2}$$

Adding noise of other particles yields

$$\delta \overline{\theta^2} = -g \overline{\theta^2} + N_{sample} g^2 \overline{\theta^2} \equiv -(g - N_{sample} g^2) \overline{\theta^2}$$

That yields

$$\delta \overline{\theta^2} = -\frac{1}{2} g_{opt} \overline{\theta^2} \quad , \quad g_{opt} = \frac{1}{2N_{sample}} \quad , \quad N_{sample} \approx N \frac{f_0}{W}$$

- In accurate analytical theory the cooling process is described by Fokker-Planck equation
 - ◆ The theory is built on the same principle as plasma theory which is a perturbation theory (large number of particles in the Debye sphere versus large number of particles in the sample

Strip Injection

- Invented by Budker, First implemented in INP (Novosibirsk)
- Used in many labs: Fermilab, CERN, Oakridge NL, JPARK, ...

Injection chicane dipoles

- Modern reincarnations (suggested in SNS in Oakridge):
 - Painting
 - ♦ Laser stripping

NICA – the First Hadron Collider in Russia

Major Questions in Nuclear Physics

- How do quarks and gluons give rise to the properties of strongly interacting particles?
- How does the structure of nuclei emerge from nuclear forces?
- What physics lies beyond the Standard Model?
- What are the phases of strongly interac
 - ting matter, and what roles do they play in the cosmos? (MPD)
- Spin structure of the proton/deuteron (g-factor). (SPD)

Why NICA?

- NICA is built to answer the last 2 questions
- Unique niche
 - ◆ Two major competitors (LHC & RHIC) have too large energy to get to the ultimate luminosity in the interesting region of low energy of few GeV/n
- From accelerator physics point of view, NICA has complete set of problems/technologies present in modern hadron colliders
 - ♦ Ultrahigh vacuum
 - ◆ Superconducting (superferric) magnets
 - ◆ Large beam current results in beam instabilities
 ⇒ Feedback systems for suppression of instabilities
 - ♦ Low-beta optics brings dynamic aperture limitations
 - Careful design of machine optics, optical measurements and correction
 - ♦ Electron and stochastic cooling at collisions
 - ♦ Instrumentation and controls required for modern colliders
 - **♦** ...

NICA Layout

- Initial operation (MPD): Xe-Xe collisions \rightarrow Bi-Bi
- The second stage (5-10 years later)(SPD): collisions of polarized protons/deuterons (spin structure)

Scheme of the Collider Ring

Two rings: one above another, 503 m circumference Collision energy in the heavy ion mode: $\sqrt{s} = 2 \cdot (2.5 \div 5.5)$ GeV/n 1.5 - 4.5 GeV kinetic energy

NICA dipoles

HEP & Colliders & NICA, V. Lebedev, August 26,

<u>Beam Cooling</u>

■ Two systems of beam cooling will be present in NICA: electron

cooling and stochastic cooling

- They are complimentary
- Stochastic cooling
 - ♦ Initially was expected to be as the main and only cooling system
 - ♦ Lack of expertise strongly delayed its development
 - Still, we plan it be ready in \sim 2 years
 - Quite challenging system to cool a bunched beam. Very little margin for errors for cooling at the collisions. Poor performance below 2.5 GeV

Electron cooling

- ◆ Good expertise accumulated in Novosibirsk for high energy cooling
 - 2 MeV system was supplied to COSY, Julich, Germany
- ♦ Very good cooling of small amplitudes. Much slower cooling at high amplitudes where help from stochastic cooling would be valuable
- Poor beam lifetime due to capture of electrons

Detector MPD

HEP & Colliders & NICA, V. Lebedev, August 26, 2025

NICA: Most Important Topics/Effects

- Engineering of magnets, RF, Power supplies, vacuum, particle sources, targets, diagnostics, collimators, cryogenics, *etc*.
- Beam physics (incomplete list)
 - ♦ One particle: beam optics, long-term stability, resonances, losses, noises, diffusion/emittance growth, *etc*.
 - ♦ One beam: instabilities, beam-induced radiation deposition, intrabeam scattering, cooling, space-charge effects and compensation
 - ♦ Two-beams: beam-beam effects and compensation, instabilities in two-beam system, machine-detector interface, *etc*.
 - ♦ Beam cooling (electron, ionization, stochastic)
- Construction
 - ♦ Schedules, costs, deliveries of components
- Operations
 - ♦ Transition to whole year operation with 2-3 months shutdown
 - ♦ New operations department to drastically reduce staff required for operations

Instead of Conclusions

- At the end of this year we plan to inject beams into collider
- At the year beginning we started operations of injection complex (KRION ion source, heavy ion linac, Booster & Nuclotron)
 - ♦ The goal is an increase of particle flux by at least an order of magnitude relative to the last Run carried out 2.5 years ago
 - ♦ The means: beam accumulation with electron cooling in Booster and loss reduction in the accelerator string
- In about 2 years we plan completion of all collider systems including high voltage electron cooling, stochastic cooling, feedbacks, all 3 RF systems of each ring and MPD detector
- The program with polarized protons and deuterons will be aimed at operation with the slow beam extraction to target(s)
 - ◆ SPD detector will follow later
- Although relatively small the NICA collider will be at the front line of modern accelerator and nuclear physics
 - ♦ We are looking for young and enthusiastic people

Backup slides

Betatron Tune Shift due to Beam Space Charge

- Dependence of betatron tunes on the betatron amplitude results in that the tunes of some particles stay at non-linear resonances
 - ♦ Consequently, particle amplitudes grow resulting in the beam loss
 - ♦ SC effect is diminishing fast with beam energy

$$\begin{bmatrix} \delta v_{SC_{X}} \\ \delta v_{SCY} \end{bmatrix} = \frac{r_{p} Z^{2} N_{i}}{2\pi A \beta^{2} \gamma^{3}} \frac{C}{\sqrt{2\pi} \sigma_{s}} \left\langle \frac{1}{(\sigma_{x} + \sigma_{y})} \begin{bmatrix} \beta_{x} / \sigma_{x} \\ \beta_{y} / \sigma_{y} \end{bmatrix} \right\rangle , \quad \sigma_{x,y} = \sqrt{\beta_{x,y} \varepsilon_{x,y} + (D_{x,y} \sigma_{p})^{2}}$$

Fig. 3. Space charge tune shift of the AGS.

Beam magnetic field $\sim \beta^2$, partially compensates electric field, $1-\beta^2=1/\gamma^2$

Fig. 1. Space Charge force of a uniform cylindrical beam.

Beam-beam Effects

■ The beam-beam tune shift is similar to the space charge tune shift but is engaged in the IPs only. The tune shift per IP:

$$\begin{bmatrix} \delta v_{BB_x} \\ \delta v_{BB_y} \end{bmatrix} = \frac{r_p Z^2 N_i}{4\pi A \beta^2 \gamma} \frac{1 + \beta^2}{\left(\sigma_x + \sigma_y\right)} \begin{bmatrix} \beta_x^* / \sigma_x \\ \beta_y^* / \sigma_y \end{bmatrix}, \quad \sigma_{x,y} = \sqrt{\beta_{x,y}^* \varepsilon_{x,y}^* + \left(D_{x,y}^* \sigma_p\right)^2}$$

For round beam

$$\delta v_{SC_X} = \frac{r_p Z^2 N_i}{8\pi A \beta^2 \gamma} \frac{1 + \beta^2}{\varepsilon}$$

- Magnetic field of counter rotating beam almost doubles force, $1+\beta^2$
- Note that for large synchrotron amplitude the tune shift increase due to larger beta-function with longitudinal displacement is compensated by decrease of space charge field

Possible Values of Tune Shifts

- Achieved values of tune shifts
 - ♦ Space charge
 - NAPM ~0.15 (strong el. cooling, 200000 turns)
 - Fermilab Booster ~0.3 (only ~2000 turns at low energy)
 - JPARK, PS Booster ~ 0.5 -0.6 (high accuracy of super-periodicity)
 - ♦ Beam-beam
 - VEPP-2 ~0.2 (round beams)
 - Typical $e^+e^- \sim 0.05$ (fast SR damping)
 - Typical hadron beams (Tevatron, LHC) ~0.01-0.015 per IP
 - Low energy RHIC ~0.1 (bad life time)
- Ratio of tune shifts:

$$\frac{\delta v_{BB}}{\delta v_{SC}} = N_{IPs} \sqrt{\frac{\pi}{2}} \frac{\sigma_s}{C} \gamma^2 \left(1 + \beta^2 \right)$$

For the present NICA δv_{sc} and δv_{sc} parameters, the beam-beam tune shifts are much smaller than the space charge ones and, in the first approximation, can be neglected

2 IPs

C = 505 m

σ_=60 cm

 $\Delta
u_{
m SC}$ =0.15dash .

0.1

0.05

- Note that for the same tune shift the beam-beam effect is more destructive than the space charge due to kick concentration near IPs
- For NICA we choose total $\Delta v = \Delta v_{SC} + 2\Delta v_{BB} \sim 0.05$
 - ◆ Cooling helps, still quite optimistic

2

3

Luminosity Limitation due to Beam Space Charge

Luminosity of round beams $(\beta_x^* = \beta_y^*)$ & head-on collisions)

$$L = \frac{f_0 n_b N_i^2}{4\pi \beta^* \varepsilon} H_L(\sigma_s / \beta^*), \quad H_L(x) = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{\exp(-y^2)}{1 + x^2 y^2} dx$$

$$\delta V_{SC} \approx \frac{r_p Z^2 N_i}{4\pi A \beta^2 \gamma^3 \varepsilon} \frac{C}{\sqrt{2\pi \sigma_s}}$$

- ♦ Weak dependence of SC tune shifts on optics
- SC limits the beam longitudinal density, N_i/σ_s
- Combining the above equations, one obtains a luminosity limitation

$$L = \frac{\sqrt{2\pi} A \beta^{2} \gamma^{3}}{r_{p} Z^{2}} \frac{f_{0} N_{i}}{(C/n_{b})} \left(\frac{\sigma_{s}}{\beta^{*}} H \left(\frac{\sigma_{s}}{\beta^{*}} \right) \right) \delta v_{SC}$$

- lack Strong dependence of L on the beam energy
- ◆ Longer bunch => larger luminosity
 - Still collisions must be within detector
 - Luminosity distribution along IP has the rms length of $\sigma_s / \sqrt{2} \sim 42 \text{ cm}$
- $\varepsilon \propto N_i =$ larger luminosity -> larger acceptance

Page | 47

Intrabeam Scattering

- Intrabeam scattering is determined by two major mechanisms
 - ♦ Temperature exchange between degrees of freedom
 - Landau collision integral describes the temperature exchange:

$$\frac{\partial f}{\partial t} = -\frac{2\pi e^4 n L_c}{m^2} \frac{\partial}{\partial v_i} \int \left(f \frac{\partial f'}{\partial v'_j} - f' \frac{\partial f}{\partial v_j} \right) \frac{u^2 \delta_{ij} - u_i u_j}{u^3} d^3 v'$$

$$\mathbf{u} = \mathbf{v} - \mathbf{v}', \quad \int f d^3 v = 1$$

- ♦ Additional heating related to non-zero dispersion
 - Scattering with particle momentum change results in additional betatron oscillations due to instant change of reference orbit

$$\Delta x = D \frac{\Delta p}{p} \xrightarrow{approximation} \Delta \varepsilon_x = \frac{1}{2} \frac{\Delta x^2}{\beta_x} = \frac{D^2}{2\beta_x} \left(\frac{\Delta p}{p}\right)^2$$

- Relatively simple equations in the smooth lattice approximation
 - ♦ Below transition there is an equilibrium state where no emittance growth
 - ◆ Particle mass changes "its sign" above the transition. That yields unlimited emittance growth (energy is taken from the beam energy)
- In heavy ion mode NICA operates in the regime of quasiequilibrium (all 3 temperatures are approximately equal)