
V. Kireyeu 03.06.2025

Update

«Nuclei» wagon

Outline
• Introduction

• How it was

• Some new ideas

• Implementation

• Documentation and code organisation

• Utilisation

• Summary

2

Introduction

Do first, think later

How it was

• JSON configuration file for the wagon

• Documented C++ «wagon» code

• Single Python post processing program:

• Many subroutines in one place

• Fitting procedure parallelisation: hardcoded ranges, initial parameters

• Wagon configuration file used for the analysis

4

Think first, do later

Some new ideas

• Config driven analysis — move as much as possible out of the code

• Rethink the architecture, but keep old good ideas

• Old code refactoring

• New approach for the code storage, integration and deployment

• Documentation: out of the code, extended

5

How it should be

Some new ideas

6

These parts are out of the code, configurable and could/must be modified

How it should be

Some new ideas

7

These parts are the code and must NEVER be modified

How it should be

Some new ideas

8

which could be easily solved by the configuration files

Typical errors in MpdRoot wagons

Hardcoded values such as particles PDG codes or PID IDs

Hardcoded constants such as particle masses or even Pi

Hardcoded centrality classes

Hardcoded histograms and their bins, limits etc

Hardcoded parameters and «magic numbers» without explanation

9

which could not be solved by the configuration files

Typical errors in MpdRoot wagons

Missing comments: purpose of the functions? Parameters? Return values?

Lack of the documentation: «black box» type analysis — how to run it? How to use it?

Obsolete commented-out code. Why it is here? Is it needed?

Code duplication

No post processing code: how to make distributions? How to get (pre-) final plots?

but must be solved somehow

10

Implementation
trying again to avoid common mistakes

Implementation

• JSON configuration file for the wagon

Left unchanged — it was a brilliant idea

of the new ideas

12

Implementation

• Documented C++ «wagon» code

Mostly unchanged — amazingly good architecture from the beginning

of the new ideas

13

Implementation

Changes in the wagon code

of the new ideas

• New approach to the efficiencies counters: enum list, single object —> easy to understand and to operate

• New counters can be added to the enum list —> automatic creation and initialisation of histograms 14

• Single Python post processing program

• Several simpler single-purpose Python programs

Analysis configuration file — the main part of the analysis

Implementation
of the new ideas

15

• System string, e.g. «Xe + W @ 2.5 A.GeV».

• Efficiencies (numerators, denominators — any combination of the wagon «efficiencies
counters»)

• Paths to the wagon configuration file, each program output files, files with fits initial
parameters.

• Analysis rapidity intervals, centrality bins, particle species to include.

• The pT ranges (for each particle in each rapidity interval in each centrality bin) to get
reconstructed dN/dy point (and thus the ranges for the Blast-Wave extrapolations).

• More to come.

Implementation
New analysis configuration file Config driven analysis

16

Implementation
New analysis configuration file

Although everything can be set in the single configuration file for the whole analysis chain
the priority in all programs is given to the command line arguments.

Flexibility is also a key.

Config driven analysis

17

• This program calculates the efficiencies used for the spectra corrections.

• Output: the ROOT-file with the 2D phase-space histograms and rapidity slices.

• Rapidity slices and efficiencies are defined in the analysis configuration JSON file.

• Works automatically for the defined particles, centralities, rapidity intervals.

Implementation
Efficiencies calculation program

18

Implementation
Efficiencies calculation program

Efficiencies defined in the configuration file

Efficiencies defined in the program

If efficiencies are not defined in the configuration file
those defined in the efficiencies calculation program
will be used!

19

• This program calculates the transverse momentum spectra and applies the efficiency and
contamination corrections calculated on the previous step.

• Output: ROOT-file with the transverse momentum spectra sliced by the defined rapidity bins.

• Three types of the spectra are saved: MC, reconstructed and reconstructed after applying
the efficiency and contamination corrections.

• Rapidity slices and efficiencies are defined in the analysis configuration JSON file.

• Works automatically for the defined particles and centralities.

Implementation
Transverse momentum spectra calculation program

20

• This program fits the transverse momentum spectra calculated with previous program.

• Currently there are only two fit functions:

• Thermal:

• Blast-Wave:

• Initial parameters for the each fit are defined in the JSON files.

Implementation
Transverse momentum spectra fitting program

dN
pTdpT

= C∫
Rmax

0
r dr mT I0 (pT sinh ρ(r)

T) K1 (mt cosh ρ(r)
T)

d2N
dpTdy

=
dN/dy

T(m0 + T)
pT exp (−

mt − m0

T)

21

Thermal fit initial parameters file has the structure of the sublist of the fit parameters for the
each:

• particle

• centrality bin

• rapidity region

Parameters: dN/dy, T, m0 (fixed!), pt_low, pt_high, where [pt_low, pt_high] is the fit range.

Implementation
Transverse momentum spectra fitting program

22

Blast-Wavefit initial parameters file has the structure same for the reconstructed and the
Monte-Carlo data (also for the each particle, centrality bin, rapidity interval):

• `C`: Normalization constant. `m0`: Particle rest mass.

• `T`: Kinetic freeze-out temperature. `beta`: Average transverse flow velocity.

• `[pt_low, pt_high]`: Fit range.

• `R_max`, `steps`: Source radius and the number of integration steps.

• `fit_found`: Flag which indicates that fit was found (1) or not (0).

Implementation
Transverse momentum spectra fitting program

23

The Blast-Wave (BW) fitting procedure is quite complex and the fit quality is not very often «good».

• The fit is performed with the initial parameters.

• The values of the fit at the low and high transverse momentum bins are compared with the fitted spectra.

• If the difference in both regions is small — the flag `fit_found` is set to 1, the initial parameters are considered
as final.

• If the difference in any region is high — the the procedure randomly set the new parameters until "good"
parameters are found or until 100 tries. If "good" parameters are found — they overwrite the initial parameters
in the fit parameters file, the `fit_found` is set to 1. Otherwise the `fit_found` flag is still 0.

• On the next runs the program will use the fit parameters with the flag `fit_found = 1` and skips the fitting
procedure.

Implementation
Transverse momentum spectra fitting program

24

In this case the config-driven approach allows you to target the specific particle, centrality,
rapidity interval without affecting other particles and/or regions and thus loosing time to re-fit
everything again and again.

Implementation
Transverse momentum spectra fitting program

25

• Efficiency and contamination phase spaces and their slices in the defined rapidity bins.

• Particles phase spaces: Monte-Carlo, reconstructed and reconstructed corrected by the efficiencies and
contaminations.

• Transverse momentum spectra: Monte-Carlo and reconstructed (corrected) with the Blast-Wave fits and
ratios between the original Monte-Carlo spectra and the reconstructed data + Blast-Wave fits
interpolation to the low and high transverse momentum regions.

• Particles dN/dy spectra (Monte-Carlo and reconstructed):

• The integral of the corrected spectra within defined transverse momentum pT bins.

• The integral of the interpolation of the Blast-Wave fits to the low and high pT regions.

Implementation
Separate drawing programs

26

Output files
• Clarity, logical structure, self-describing names

27

• Some old approach ideas works really great, however some modifications were be made.

• The new config-driven analysis approach sounds complex, but in reality is much easier to
implement and then to perform than the standard «put everything in the program» method.

• The performance gain becomes even more pronounced when re-use analysis with the tuned
fit parameters.

Summary for the first part

28

Documentation
and code organisation

• Wagon C++ code is documented using the Doxygen engine and tons of comments.

• Analysis and drawing routines are documented with Doxygen-style comments instead of the
Python docstring for the sake of unification. Tons of ordinary comments are still included.

• The main wagon C++ code and analysis routines are also supplemented by the
documentation in Markdown (README.md files in the repository).

• New documentation dedicated repository organised.

Documentation

30

Documentation
New documentation repository: overall view

31

Documentation
New documentation repository: first steps — newcomers are welcome

32

Documentation
New documentation repository: dive deeper into the analysis wagons structure

Please, do not hesitate to contact me if you want to
contribute and describe your analysis.

More documentation — better:

• It simplifies onboarding of the newcomers (and
students).

• It give insights on what we are doing (pure code does
not allow this) — exchange of methods and ideas,
cross-checks etc.

33

Documentation
New documentation repository: analysis in details

Sometimes it is inconvenient to put everything is small details in
the code — we can still describe what and how we are doing.

Please, do not hesitate to contact me if you want to
contribute and describe your analysis.

More documentation — better:

• It simplifies onboarding of the newcomers (and
students).

• It give insights on what we are doing (pure code does
not allow this) — exchange of methods and ideas,
cross-checks etc.

34

• The wagon and analysis development moved out of the MpdRoot tree:

now it is easier to implement and check new ideas, refactor code, test the workflow etc.

• The new stand-alone repository is still publicly available.

• The ‘nuclei’ analysis directory is still in the MpdRoot tree:

when a new «stable» version of wagon code or analysis routines become available it will be
immediately synchronised with the MpdRoot ‘dev’ branch.

• Such procedure helps to maintain the development of the analysis active while reducing the
commits and merge requests load on the MpdRoot repository: win-win approach.

Code organisation

35

• Please, write documentation.

• Do not hesitate to put explanatory comments in the code:

• Describe what, how and why you are doing.

• Describe input parameters, returned value.

• This sounds annoying, waste of time and unnecessary, but in reality is extremely important.

Summary for the second part

36

Utilisation
actually, this is the results section

Utilisation
End of the day

Request 37:

5M of PHQMD Xe+W min. bias events at T = 2.5 GeV/n

38

Utilisation
End of the day

• After running the whole analysis chain you obtain thousands of plots.

• Here only few are presented to show the proof of work.

$ find . -name *.pdf | wc -l

1695

339 plots per single specie
39

Utilisation
Efficiencies

0.5− 0 0.5 1 1.5 2
lab

y
0

0.5
1

1.5
2

2.5
3

3.5

, G
eV

/c
Tp

 = 2.5 A.GeV, 0 - 20%
kin

 overall for p in Xe+W, Eε

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 2.5 A.GeV, 0 - 20%
kin

 overall for p in Xe+W, Eε

0 0.5 1 1.5 2 2.5 3 3.5
, GeV/c

T
p

0

0.2

0.4

0.6

0.8

1

 o
ve

ra
ll

ε

 = 2.5 A.GeV, 0 - 20%, 0.9 < y < 1.0
kin

 overall for p in Xe+W, Eε = 2.5 A.GeV, 0 - 20%, 0.9 < y < 1.0
kin

 overall for p in Xe+W, Eε

0.5− 0 0.5 1 1.5 2
lab

y
0

0.5
1

1.5
2

2.5
3

3.5

, G
eV

/c
Tp

 = 2.5 A.GeV, 0 - 20%
kin

 overall for d in Xe+W, Eε

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 2.5 A.GeV, 0 - 20%
kin

 overall for d in Xe+W, Eε

0 0.5 1 1.5 2 2.5 3 3.5
, GeV/c

T
p

0

0.2

0.4

0.6

0.8

1

 o
ve

ra
ll

ε

 = 2.5 A.GeV, 0 - 20%, 0.9 < y < 1.0
kin

 overall for d in Xe+W, Eε = 2.5 A.GeV, 0 - 20%, 0.9 < y < 1.0
kin

 overall for d in Xe+W, Eε

0.5− 0 0.5 1 1.5 2
lab

y
0

0.5
1

1.5
2

2.5
3

3.5

, G
eV

/c
Tp

 = 2.5 A.GeV, 0 - 20%
kin

 overall for t in Xe+W, Eε

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 2.5 A.GeV, 0 - 20%
kin

 overall for t in Xe+W, Eε

0.5− 0 0.5 1 1.5 2
lab

y
0

0.5
1

1.5
2

2.5
3

3.5

, G
eV

/c
Tp

 = 2.5 A.GeV, 0 - 20%kin overall for He4 in Xe+W, Eε

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 2.5 A.GeV, 0 - 20%kin overall for He4 in Xe+W, Eε

0 0.5 1 1.5 2 2.5 3 3.5
, GeV/c

T
p

0

0.2

0.4

0.6

0.8

1

 o
ve

ra
ll

ε

 = 2.5 A.GeV, 0 - 20%, 0.5 < y < 0.6
kin

 overall for t in Xe+W, Eε = 2.5 A.GeV, 0 - 20%, 0.5 < y < 0.6
kin

 overall for t in Xe+W, Eε

0 0.5 1 1.5 2 2.5 3 3.5
, GeV/c

T
p

0

0.2

0.4

0.6

0.8

1

 o
ve

ra
ll

ε

 = 2.5 A.GeV, 0 - 20%, 0.5 < y < 0.6kin overall for He4 in Xe+W, Eε = 2.5 A.GeV, 0 - 20%, 0.5 < y < 0.6kin overall for He4 in Xe+W, Eε

40

Utilisation
Spectra: pT, dN/dy

0 0.2 0.4 0.6 0.8 1
lab

y
0

10
20
30
40
50
60
70dN

/d
y

 = 2.5 A.GeV, 0 - 20%
kin

p in Xe+W, E

MC

Reco

 = 2.5 A.GeV, 0 - 20%
kin

p in Xe+W, E

0 0.2 0.4 0.6 0.8 1
lab

y
0

2

4

6

8
10

12

14

dN
/d

y

 = 2.5 A.GeV, 0 - 20%kind in Xe+W, E

MC

Reco

 = 2.5 A.GeV, 0 - 20%kind in Xe+W, E

0 0.2 0.4 0.6 0.8 1
lab

y
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

dN
/d

y

 = 2.5 A.GeV, 0 - 20%
kin

t in Xe+W, E

MC

Reco

 = 2.5 A.GeV, 0 - 20%
kin

t in Xe+W, E

0 0.5 1 1.5 2 2.5 3 3.5
)c (GeV/

T
p

6−10

5−10

4−10

3−10

2−10

1−10

1-2)c
 (G

eV
/

yd Tpd Tp/
N2

 d
ev

N
1/

 = 2.5 A.GeV, 0 - 20%, 0.8 < y < 0.9kint in Xe+W, E

MC Reco Blast-Wave

MC
Reco + BW

MC
BW

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
at
io

 = 2.5 A.GeV, 0 - 20%, 0.8 < y < 0.9kint in Xe+W, E

0 0.2 0.4 0.6 0.8 1
lab

y
0

0.02

0.04

0.06

0.08

dN
/d

y

 = 2.5 A.GeV, 0 - 20%
kin

He4 in Xe+W, E

MC

Reco

 = 2.5 A.GeV, 0 - 20%
kin

He4 in Xe+W, E

0 0.5 1 1.5 2 2.5
)c (GeV/

T
p

6−10

5−10

4−10

3−10

2−10

1−10
1

10

210

310-2)c
 (G

eV
/

yd Tpd Tp/
N2

 d
ev

N
1/

 = 2.5 A.GeV, 0 - 20%, 0.9 < y < 1.0
kin

p in Xe+W, E

MC Reco Blast-Wave

MC
Reco + BW

MC
BW

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
at
io

 = 2.5 A.GeV, 0 - 20%, 0.9 < y < 1.0
kin

p in Xe+W, E

0 0.5 1 1.5 2 2.5 3 3.5
)c (GeV/

T
p

6−10

5−10

4−10

3−10

2−10

1−10

1
10

-2)c
 (G

eV
/

yd Tpd Tp/
N2

 d
ev

N
1/

 = 2.5 A.GeV, 0 - 20%, 0.9 < y < 1.0kind in Xe+W, E

MC Reco Blast-Wave

MC
Reco + BW

MC
BW

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
at
io

 = 2.5 A.GeV, 0 - 20%, 0.9 < y < 1.0kind in Xe+W, E

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
)c (GeV/

T
p

6−10

5−10

4−10

3−10

2−10

1−10-2)c
 (G

eV
/

yd Tpd Tp/
N2

 d
ev

N
1/

 = 2.5 A.GeV, 0 - 20%, 0.7 < y < 0.8kinHe4 in Xe+W, E

MC Reco Blast-Wave

MC
Reco + BW

MC
BW

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
at
io

 = 2.5 A.GeV, 0 - 20%, 0.7 < y < 0.8kinHe4 in Xe+W, E

41

Utilisation
Room for improvement

• PID criteria: purity (contamination), efficiency, low transverse momentum part

• Blast-Wave fit parameters and form: low and high transverse momentum part, dN/dy points.

Sounds easy, but actually can take an indefinite amount of time.

Good news: all machinery is set up.

42

Summary
this ends soon already

• We must think about the future — students, newcomers — and finally start to write the code
in a «good» way:

• Avoid hardcoded and «magic» numbers.

• Put explanatory comments in the code.

• Add the documentation which covers the whole analysis.

It does not take so much time as you can think — but saves your time in the future.

Summary

44

• The new config-driven analysis paradigm was used for the «nuclei» wagon update:

• Easy to implement.

• Easy to use.

• It saves a lot of time during the post-processing (after the MpdRoot train) analysis.

«Put everything in the black box» paradigm is obsolete and dangerous.

Summary

45

• Despite the right approach used within the «nuclei» wagon, there is room for improvement:

• PID part in the wagon C++ part must be refactored (reduce the code).

• More options must be added to the analysis configuration file (post-processing analysis).

• Small refactor of the post-processing programs for the heavies usage of the
configuration file — it is a must.

~1 month to implement and test

Fully config-driven approach

Summary

46

