Update on net charge and hadron ratio fluctuations measurement with MPD in BiBi @9.2 GeV

A. Chernyshov, G. Eyyubova, I. P. Lokhtin

Skobeltsyn Institute of Nuclear Physics Moscow State University

Motivation, physic interest

 Probe the QGP phase; Non-monotonic behavior in fluctuations as a function of beam energy are proposed as signatures of the QCD critical point.
 J.Phys.G34:S437,2007; Phys. Rev. Lett. 81, 4816 (1998)

D-measure:
$$4 \frac{\langle \delta Q^2 \rangle}{\langle N_{ch} \rangle}$$
 $D = \begin{cases} 4, \text{HG} \\ 3, \text{HRG} \\ 1 - 1.5, \text{QGP} \end{cases}$

S. Jeon, V. Koch, Phys. Rev. Lett. **85**, 2076 S. Jeon, V. Koch, arXiv:hep-ph/0304012

Dynamical fluctuation variable v:

$$v_{dyn}[+,-] = \frac{\langle N_+(N_+-1)\rangle}{\langle N_+\rangle^2} + \frac{\langle N_-(N_--1)\rangle}{\langle N_-\rangle^2} - 2\frac{\langle N_+N_-\rangle}{\langle N_+\rangle\langle N_-\rangle}$$

 $\begin{array}{l} & \lor v_{dyn} < 0 & \rightarrow \mbox{ (opposite charge) correlations dominate} \\ & \lor v_{dyn} > 0 & \rightarrow \mbox{ (same charge) fluctuations dominate} \\ & \lor v_{dyn} = 0 & \rightarrow \mbox{ independent particle production} \end{array}$

For
$$\langle N_+ \rangle \approx \langle N_- \rangle$$
:
 $D = 4 \frac{\langle \delta Q^2 \rangle}{\langle N_{ch} \rangle} \approx \langle N_{ch} \rangle \langle v_{dyn} \rangle + 4$

Experimental data on net-charge fluctuations

Analysis wagon

To be placed in *mpdroot/physics/chargeCorrelations/*

Input file for the current analysis

#-----Parameters used for analysis-----# Event selection:
mIsMC true # MC-reco analysis
mZvtxCut 30 # cut on vertex z coordinate
mRvtxCut 2 # cut on vertex transverse coordinate
Track selection:
mNofHitsCut 15 # minimal number of hits to accept track
mEtaCut 1. # maximal pseudorapidity accepted
mPtminCut 0.1 # minimal pt used in analysis
mPtmaxCut 3.0 # maximal pt used in analysis
mDcaCut 2.0 # maximal DCA accepted

PID cutsmPIDsigTPC 3.0mPIDsigTOF 3.0

REC tracks: Global tracks MC tracks: (p,K,π) from primary vertex ($\sqrt{(MCHeader->GetX() - trackMC->GetStartX())^2 + ...} < 1e-6$)

pNetFluc.txt

UrQMD MC vs REC

Data set: /eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp07-22-500ev-req25/BiBi/09.2GeV-mb/urqmd/BiBi-09.2GeV-mp07-22-500ev-req25/0,1,...

UrQMD MC vs REC

- \bullet v observable is robust against random efficiency losses.
- Holds only if efficiency is independent on multiplicity C. Pruneau, S. Gavin, S. Voloshin, Phys. Rev. C 66, 044904 (2002).
- Good MC-rec agreement.

ν(N_{ch}) observable has to be corrected for the efficiency.

Final results have to be corrected for the global charge conservation effect, $v \rightarrow v + 2/(N_+)$

Particle Ratio Fluctuations

 $\frac{p/\pi}{(p^+ + p^-)/(\pi^+ + \pi^-)} \qquad \begin{array}{c} K/\pi & K/p \\ (K^+ + K^-)/(\pi^+ + \pi^-) & (K^+ + K^-)/(p^+ + p^-) \end{array}$

- Non-monotonic behavior of the K/ π yield ratio at $\sqrt{s_{NN}} \sim 7.6$ GeV at SPS for central Pb+Pb collisions is observed and is supposed to be a signature of phase transition. S. V. Afanasiev et al. (The NA49 Collaboration), Phys. Rev. C 66 054902 (2002)
- At SPS σ_{dyn} observable was used.
- STAR uses v_{dyn}

$$\nu_{\text{dyn},K\pi} = \frac{\langle N_K (N_K - 1) \rangle}{\langle N_K \rangle^2} + \frac{\langle N_\pi (N_\pi - 1) \rangle}{\langle N_\pi \rangle^2} - 2 \frac{\langle N_K N_\pi \rangle}{\langle N_K \rangle \langle N_\pi \rangle}$$

 \succ ν_{dyn} < 0 → (Kπ) correlations dominate \succ ν_{dyn} > 0 → (KK), (ππ) fluctuations dominate or anticorrelation (Kπ)

Particle Ratio Fluctuations

Summary

- Analysis wagon is prepared for net charge and particle ratio fluctuation measurements.
- Net charge fluctuations v and $v(N_{ch})$ were calculated in BiBi collisions at 9.02 GeV with UrQMD model at MC and REC levels.
 - > A good agreement between MC and REC for v_{dyn} is achieved with the current track selection and the the independent (not track-based) centrality calculation (e.g. *b*-parameter).
 - Reconstructed v_{dyn} values are close to the generated ones (but the difference increases with event centrality up to ~14% for most central collisions) with centrality estimated from centrality wagon.

 $\succ v(N_{ch})$ onservable has to be corrected for the tracking efficiency (to be done).

- Particle ratio fluctuations were calculated using v observable at MC and REC levels.
 - Performance of reconstruction has to be studied further.

Backup

PID with pid wagon

n-sigma cut TPC, TOF = 3

- \succ *p,K,* π ,*e* are considered.
- both TPC and TOF n-sigma cut is used if(track->GetTofFlag() == 2 || track->GetTofFlag() == 6)
- Only TPC -n-sigma cut if no TOF
- > If several particles pass the cut \rightarrow no PID

Efficiency correction

Both $v_{dyn,+}$ v_{dyn,x/y} are independent of experimental efficiency ϵ .

Holds: if the ε is independent of multiplicity.

The dependence on ε would arise if the Gaussian approximation is not valid, e.g. if the detector response functions differ markedly from Binomial or Gaussian functions.

Let the probability of detecting each particle be ε and the probability of missing it be $(1 - \varepsilon)$. For a binomial distribution the average number of measured particles is: $\langle N \rangle_{\exp} = \epsilon \langle N \rangle$ while the average square is: $\langle N^2 \rangle_{\exp} = \epsilon^2 \langle N^2 \rangle + \epsilon (1 - \epsilon) \langle N \rangle$ *Cancels out for v.*

More details in : C. Pruneau, S. Gavin, S. Voloshin, Phys. Rev. C 66, 044904 (2002).