ОБЪЕДИНЁННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Лаборатория физики высоких энергий им. В. И. Векслера и А. М. Балдина Диссертационный совет ОИЯИ.02.01.2024.П по физике частиц

Моделирование рождения легких ядер и гиперядер в столкновениях тяжелых ионов в термодинамическом подходе, реализованном в генераторе THESEUS

Диссертация на соискание ученой степени кандидата физико-математических наук Специальность 1.3.15: Физика атомных ядер и элементарных частиц, физика высоких энергий

Кожевникова Марина Евгеньевна

Работа выполнена в Лаборатории физики высоких энергий им. В. И. Векслера и А. М. Балдина Объединенного института ядерных исследований

Оппоненты:

д.ф.-м.н. Пшеничнов Игорь Анатольевич к.ф.-м.н. Забродин Евгений Евгеньевич <u>Научный руководитель:</u> д.ф.-м.н. Иванов Юрий Борисович

Дубна 2025

Содержание диссертации

Введение

Краткий обзор темы. Актуальность темы. Цели и задачи.

Глава 1. Описание модели 3FD и THESEUS

Основные стадии моделирования, новая версия генератора THESEUS-v2

Глава 2. Моделирование рождения легких ядер

Расчеты быстротных распределений, p_T и m_T -спектров, коллективных потоков, отношений выходов частиц при различных энергиях. Анализ полученных результатов.

Глава 3. Моделирование рождения гиперядер

Глобальные наблюдаемые, направленный поток, Анализ полученных результатов.

Заключение

Научная новизна, теоретическая и практическая значимость. Положения, выносимые на защиту. Личный вклад. Публикации. Достоверность и апробация результатов. Основные итоги исследования

Введение

.

Краткий обзор. Актуальность темы исследования

Основная цель исследований ядерных столкновений – изучение фазовой диаграммой КХД. Вблизи критической точки и в области спинодальной нестабильности ожидается повышенный выход легких ядер.

Легкие ядра при умеренно релятивистских энергиях вносят значительный вклад в полный барионный заряд. Необходимо их корректно описывать.

Существует много моделей для описания рождения легких ядер (коалесцентные, микроскопические, термодинамические)

Моделирование позволяет разобраться в физике процессов, происходящих в ядерной материи. Эксперименты: BES-RHIC, SPS, NICA and FAIR.

 \sqrt{s}

Цель и задачи исследования

Цель настоящей диссертационной работы: разработка термодинамического подхода к описанию рождения легких (гипер)ядер, основанного на 3D динамической модели ядро-ядерных столкновений, который позволит не только объяснять уже имеющиеся данные, как это имеет место в феноменологической статистической модели, как в [Andronic, NPA 772, 167 (2006)], но и предсказывать результаты будущих экспериментов, в частности, на коллайдере NICA.

01.

Разработать новую версию генератора THESEUS, помощью которой можно моделировать легкие (гипер)ядра (и их антиядра).

02.

Применить новую версию генератора THESEUS к анализу имеющихся экспериментальных данных коллабораций NA49 и STAR, чтобы выяснить область и степень применимости этого подхода.

Глава 1. Описание метода моделирования в генераторе THESEUS

Модель 3FD (3-fluid dynamics)

momentum along beam

Рис.: Система сталкивающихся ядер и связанные с ней жидкости (вверху) и функции распределения в зависимости от импульса вдоль пучка (внизу) Модель 3FD описывает динамику от ранней неравновесной стадии вплоть до замораживания. В модели материя описывается тремя жидкостями:

• Две барионные жидкости,

первоначально связанные с начальными нуклонами, входящими в состав ядра-снаряда (projectile) и ядра-мишени (target);

• Файрбольная жидкость (fireball), содержащая частицы, образующиеся в процессе эволюции системы, которые заселяют преимущественно область центральных быстрот.

Модель 3FD: основные уравнения

Total energy-momentum conservation:

 $\partial_{\mu}(T^{\mu\nu}_{\rho}+T^{\mu\nu}_{t}+T^{\mu\nu}_{f})=0$

3FD: Yu.B. Ivanov, V.N. Russkikh, V.D. Toneev, PHYSICAL REVIEW C 73, 044904 (2006)

Свойства модели:

- Начальные условия: два сферических ядра с резким краем и начальной барионной плотностью $n_B = 0.15 \ \phi \text{M}^{-3}$, флуктуации отсутствуют.
- Конечная тормозная способность ядерной материи.
- Уравнение состояния.
- Гидродинамические уравнения с членами, отвечающими за трение, моделируют взаимодействие между жидкостями.
- Замораживание при плотности энергии $\varepsilon_{\rm frz} = 0.4 \ \Gamma \Im B / \phi M^3$.

- Генератор событий THESEUS (Three-fluid Hydrodynamics-based Event Simulator Extended by UrQMD final State interactions) был впервые представлен в 2016 году в работе Р. Batyuk et al., PHYSICAL REVIEW C 94, 044917 (2016).
- Генератор базируется на модели 3FD. Эта модель описывает гидродинамическую стадию эволюции системы,
- THESEUS описывает следующую стадию, наступающую после замораживания: переход от жидкостного описания к кинетическому (particlization).
- Кинетическая стадия моделируется при помощи модели UrQMD (Ultrarelativistic Quantum Molecular Dynamics), описываются процессы адронного взаимодействия в конечном состоянии (или дожига).

THESEUS-v2: обновления

 В первоначальной версии THESEUS не было легких ядер. В новой версии (THESEUS-v2) есть легкие ядра и гиперядра, которые рассматриваются единообразно с другими частицами термодинамически без использования дополнительных параметров.

 Для включения легких (гипер)ядер (и их античастиц) пересчитывается барионный химический потенциал (исходя из сохранения локального барионного заряда):

$$n_{\text{primordial }N}(x;\mu_B,T) + \sum_{\text{hadrons}} n_i(x;\mu_B,\mu_S,T)$$
$$= n_{\text{observable }N}(x;\mu'_B,T) + \sum_{\text{hadrons}} n_i(x;\mu'_B,\mu_S,T)$$
$$+ \sum_{\text{nuclei}} n_c(x;\mu'_B,\mu_S,T).$$

$\operatorname{Nucleus}(E[\operatorname{MeV}])$	J	decay modes, in $\%$
d	1	Stable
t	1/2	Stable
$^{3}\mathrm{He}$	1/2	Stable
$^{4}\mathrm{He}$	0	Stable
${}^{4}\text{He}(20.21)$	0	p = 100
${}^{4}\text{He}(21.01)$	0	n = 24, p = 76
$^{4}\text{He}(21.84)$	2	n = 37, p = 63
${}^{4}\text{He}(23.33)$	2	n = 47, p = 53
${}^{4}\text{He}(23.64)$	1	n = 45, p = 55
${}^{4}\text{He}(24.25)$	1	n = 47, p = 50, d = 3
${}^{4}\text{He}(25.28)$	0	n = 48, p = 52
${}^{4}\mathrm{He}(25.95)$	1	n = 48, p = 52
${}^{4}\text{He}(27.42)$	2	n = 3, p = 3, d = 94
${}^{4}\text{He}(28.31)$	1	n = 47, p = 48, d = 5
${}^{4}\text{He}(28.37)$	1	n = 2, p = 2, d = 96
4 He(28.39)	2	n = 0.2, p = 0.2, d = 99.6
${}^{4}\text{He}(28.64)$	0	d = 100
${}^{4}\mathrm{He}(28.67)$	2	d = 100
${}^{4}\text{He}(29.89)$	2	n = 0.4, p = 0.4, d = 99.2
$^3_\Lambda { m H}$	1/2	Stable
$^4_{\Lambda}{ m He}$	0	Stable

THESEUS-v2: обновления

- Нестабильные легкие ядра распадаются и вносят вклад в распределения стабильных легких ядер.
- Нет дожига для легких ядер, потому что UrQMD их не обрабатывает. Мы моделируем стадию дожига поздним замораживанием с плотностью энергии ε_{frz} = 0.2 ГэВ/фм³, которое одинаково для всех энергий столкновения, центральностей и комбинаций сталкивающихся ядер, см. М.Kozhevnikova, Yu.B. Ivanov Phys.Rev.C 107 (2023) 2, 024903
- Протоны и нейтроны различаются и пересчитываются с учетом рождения легких (гипер)ядер

$\operatorname{Nucleus}(E[\operatorname{MeV}])$	J	decay modes, in $\%$
d	1	Stable
t	1/2	Stable
$^{3}\mathrm{He}$	1/2	Stable
$^{4}\mathrm{He}$	0	Stable
${}^{4}\mathrm{He}(20.21)$	0	p = 100
${}^{4}\mathrm{He}(21.01)$	0	n = 24, p = 76
${}^{4}\text{He}(21.84)$	2	n = 37, p = 63
${}^{4}\text{He}(23.33)$	2	n = 47, p = 53
${}^{4}\text{He}(23.64)$	1	n = 45, p = 55
${}^{4}\text{He}(24.25)$	1	n = 47, p = 50, d = 3
${}^{4}\text{He}(25.28)$	0	n = 48, p = 52
${}^{4}\mathrm{He}(25.95)$	1	n = 48, p = 52
${}^{4}\mathrm{He}(27.42)$	2	n = 3, p = 3, d = 94
${}^{4}\mathrm{He}(28.31)$	1	n = 47, p = 48, d = 5
${}^{4}\text{He}(28.37)$	1	n = 2, p = 2, d = 96
${}^{4}\text{He}(28.39)$	2	n = 0.2, p = 0.2, d = 99.6
${}^{4}\text{He}(28.64)$	0	d = 100
${}^{4}\mathrm{He}(28.67)$	2	d = 100
${}^{4}\text{He}(29.89)$	2	n = 0.4, p = 0.4, d = 99.2
$^3_{\Lambda}{ m H}$	1/2	Stable
$^4_\Lambda { m He}$	0	Stable

Схема моделирования эволюции системы сталкивающихся тяжелых ядер

Глава 2. Исследование легких ядер

THESEUS-v2: позднее замораживание

Для легких ядер модель UrQMD не способна моделировать стадию дожига. Поэтому мы моделируем эту стадию поздним замораживанием.

Самое подходящее значение, как видно из результатов для протонов: $\varepsilon_{\rm frz} = 0.2\Gamma$ эВ/фм³.

Используются протоны, т.к. они тесно связаны с легкими ядрами.

Рис.: Спектры по поперечным импульсам для протонов в центральных столкновениях Pb + Pb.

Быстротные распределения в столкновениях Pb+Pb

Продольная быстрота:

 $y = \frac{1}{2} ln \frac{E + p_z}{E - p_z}$

 p_z - импульс вдоль пучка

THESEUS-v2: Kozhevnikova M., Ivanov Y. B. Phys. Rev. C. — 2023. — Vol. 107, no.2. — P. 024903. **3FD:** Ivanov Y. B., Soldatov A. A. Eur. Phys. J. A. — 2017. — Vol. 53, no. 11. — P. 218 NA49: Anticic T. [et al.]. Phys. Rev. C. — 2016. — Vol. 94, no. 4. — P. 044906.

Моделирование с поздним замораживанием дает в целом разумный результат, но наблюдается ухудшение с ростом энергии.

Удивительно то, что для ³Не результат оказался даже лучше, чем для дейтронов, у которых масса меньше.

Направленный поток

Рис.: Направленный поток протонов (верхний рисунок) и дейтронов (нижний рисунок) и в зависимости от быстроты в полуцентральных столкновениях (b = 6 фм) столкновений Au+Au, полученный для энергии $\sqrt{s_{NN}} = 7.7 \ \Gamma$ эВ и двух уравнений состояния: с фазовым переходом 1-го рода и с кроссовером.

Для сравнения приведены данные STAR:

Adam J. [et al.]. // Phys. Rev. C. — 2020. — Vol. 102, no. 4. — P. 044906.

Adamczyk L. [et al.]. // Phys. Rev. Lett. — 2014. — Vol. 112, no. 16. — P. 162301.

Модель не смогла должным образом описать потоки для дейтронов.

Может быть, это связано с критической точкой КХД фазовой диаграммы в этой области энергий

STAR (preliminary): Pandav, plenary talk at CPOD 2024, https://conferences.lbl.gov/event/1376/contributions/8772/

3 ГэВ: быстротные распределения

- Моделирование с поздним замораживанием дает разумный и, в целом, лучший результат, чем со стандартным замораживанием.
- Нет зависимости от уравнения состояния вещество эволюционирует в адронной фазе.
- Хорошо описывается разница в формах распределений протонов и легких ядер в зависимости от центральности.
- Результаты при b = 7 fm and b = 8 fm иллюстрируют неопределенность выбора прицельного параметра, и b = 7 fm дает, в целом, лучший результат.
- Для d, t и ³He больше подходит позднее замораживание (ε_{frz} = 0.2 ГэВ/фм³), а для ⁴He стандартное (ε_{frz} = 0.4 ГэВ/фм³). ⁴He лучше выживает при дожиге, т.к. это более пространственно компактный и сильносвязанный объект.
- Для корректного описания выходов ⁴Не требуется вклад от распадов нестабильных ядер с А=5

THESEUS-v2: Kozhevnikova M., Ivanov Y. B. Phys. Rev. C. — 2024. — Vol. 109, no. 1. — P. 014913, STAR: Phys.Rev.C 110 (2024) 5, 054911.

3 ГэВ: направленный поток

Рис.: Результаты THESEUS-v2 по направленному потоку v_1 протонов и легких ядер (d, ³He, ⁴He) в сравнении с данными STAR:

Abdallah M. S. [et al.]. // Phys. Lett. B. —2022.—Vol.827. — P. 136941;

Abdallah M. S. [et al.]. // Phys. Lett. B. —2022.—Vol.827. — P.137003.

Хорошее описание протонов STAR, за исключением больших значений быстрот.

- Согласие с данными STAR ухудшается с увеличением атомного числа легкого ядра.
- Выбор уравнения состояния не оказывает почти никакого влияния на результат → в динамике доминирует адронная фаза.

THESEUS-v2: Kozhevnikova M., Ivanov Y. B. Phys. Rev. C. — 2024. — Vol. 109, no. 1. — P. 014913

3 ГэВ: вклад нестабильных состояний

- Обнаружено (Phys. Rev. C 107, no.2, 024903 (2023), Particles 6, no.1, 440-450), что вклад от распадов ⁴He* в дейтроны пренебрежимо мал, но более существенен для тритонов и ядер ³Не при энергиях √*s_{NN}* > 6 ГэВ при больших значениях быстрот.
- При √s_{NN} = 3 ГэВ предсказаны (V. Vovchenko, et al., Phys. Lett. B, 135746 (2020)), вклады ~60% для тритонов и ³Не даже при у=0. Наш расчет подтверждает: вклад ~20% для дейтронов и 50–100% (в зависимости от быстроты) для ³Не.
- Также показано, что поток v₁ дейтронов, тритонов и ядер ³Не оказался нечувствителен к вкладом от ⁴Не*.

THESEUS-v2: Kozhevnikova M., Ivanov Y. B. Phys. Rev. C. — 2024. — Vol. 109, no. 1. — P. 014913

STAR: Phys.Rev.C 110 (2024) 5, 054911

Глава 3. Исследование гиперядер

Средний поперечный импульс

- Для р и Л используется стандартное замораживание $\varepsilon_{\rm frz} = 0.4 \ \Gamma
 m {>B}/\phi m^3$ с последующим дожигом UrQMD;
- Для d, t и ³Не используется позднее замораживание $\varepsilon_{\rm frz} = 0.2 \ \Gamma$ эВ/фм³;
- Для ⁴Не и $^{4}_{\Lambda}$ Не используется стандартное замораживание $\varepsilon_{\rm frz} = 0.4 \ \Gamma$ эВ/фм³.

Результаты хорошо согласуются с экспериментом, воспроизводятся даже небольшие отклонения от прямой.

THESEUS-v2: Kozhevnikova M., Ivanov Y. B. Phys. Rev. C. —2024. — Vol. 109, no. 3. — P. 034901.

STAR: M. I. Abdulhamid et al. PhysRevC.110.054911 (2024) Ji Y. // EPJ Web Conf. — 2023. — Vol. 276. — P. 04003.

Отношения выходов частиц

- для t и $^{3}_{\Lambda}$ Не используется позднее замораживание $\varepsilon_{\rm frz} = 0.2$ ГэВ/фм³;
- для ⁴Не и $^{4}_{\Lambda}$ Не используется стандартное замораживание $\varepsilon_{\rm frz} = 0.4 \ \Gamma$ эВ/фм³;
- предсказание для ⁴_ΛHe со стандартным и поздним замораживанием.

Небольшая переоценка отношения t/p по причине недооценки выхода протонов (Kozhevnikova, Ivanov, Phys. Rev. C 109, no.1, 014913 (2024)). Мало различия между различными уравнениями состояния -> эволюция системы происходит преимущественно в адронной фазе.

THESEUS-v2: Kozhevnikova M., Ivanov Y. B. Phys. Rev. C. — 2024. — Vol. 109, no. 3. — P. 034901.

Направленный поток

- Для р и Л используется стандартное замораживание $\varepsilon_{\rm frz} = 0.4 \ \Gamma$ эВ/фм³ с последующим дожигом UrQMD.
- Для t, ⁴He $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ He используется позднее замораживание $\varepsilon_{\rm frz} = 0.2$ ГэB/фм³.
- Хорошее согласие для р и **Л**, особенно в области центральных быстрот.
- Нет зависимости результатов для (гипер)ядер от уравнения состояния.
- Для гиперядер результаты находятся в согласии с экспериментом в рамках статистических погрешностей.

THESEUS-v2: Kozhevnikova M., Ivanov Y. B. Phys. Rev. C. —2024. — Vol. 109, no. 3. — P. 034901.

Abdallah M. S. [et al.]. // Phys. Lett. B. — 2022. — Vol. 827. — P. 136941, Abdallah M. S. [et al.]. //Phys. Lett. B. —2022. —Vol.827. —P.137003, Aboona B. [et al.]. // Phys. Rev. Lett. — 2023. — Vol. 130, no. 21. — P. 212301.

23

Заключение

Научная новизна

Разработан новый подход к моделированию легких (гипер)ядер в столкновениях тяжелых ионов, основанный на термодинамическом описании в рамках полномасштабного 3D моделирования ядерных столкновений, в котором адроны и легкие (гипер)ядра рассматриваются единообразно. Этот подход реализован в обновленной версии генератора THESEUS, предназначенного для моделирования столкновений тяжелых ионов при умеренно релятивистских энергиях.

В этом подходе не требуются дополнительные феноменологические параметры, как в коалесцентных моделях, или обширные входные данные, как это необходимо в динамических моделях. Температуры и химические потенциалы не параметризуются согласно экспериментальным данным, как в статистической модели или Blast-Wave, а рассчитываются в модели 3FD (Three-Fluid Dynamics), исходя из начальных данных и уравнения состояния. Следовательно, такой подход существенно увеличивает предсказательную силу моделирования.

Разработанный новый подход впервые применен к анализу данных по легким ядрам в столкновениях Au+Au и Pb+Pb при энергиях $\sqrt{s_{NN}} = 3 - 19.6$ ГэВ. Изучены быстротные распределения, p_T , m_T -спектры, направленный v_1 и эллиптический v_2 потоки. Полученные результаты находятся в разумном согласии с имеющимися экспериментальными данными.

Также впервые проведено аналогичное исследование для гиперядер, таких как гипертритий $^{3}_{\Lambda}$ Н и гипергелий $^{4}_{\Lambda}$ Не, в столкновениях Au+Au при энергии $\sqrt{s_{NN}} = 3$ ГэВ.

Таким образом, данная диссертационная работа имеет научную новизну как в разработке метода, так и его применения к описанию данных.

Теоретическая и практическая значимость работы

Разработанная новая версия генератора THESEUS и проведенное в данной работе с помощью неё исследование легких ядер дает возможность делать предсказания для будущих экспериментов при умеренно релятивистских энергиях столкновения тяжелых ионов. Это может помочь в планировании таких экспериментов, в частности, на новом ускорительном комплексе NICA в Дубне.

Кроме того, термодинамический подход к образованию легких ядер сам по себе имеет теоретический интерес. Полученные разумные результаты показывают, что термодинамический подход в рамках гидродинамической модели применим к описанию рождения не только различных адронов, но и таких деликатных объектов, как легкие (гипер)ядра, энергии связи которых много меньше энергии возбуждения ядерной среды.

Поскольку в 3FD и THESEUS отсутствуют критическая точка и флуктуации, характерные для неравновесной спинодальной фазы, генератор THESEUS дает некоторый реперный расчет выходов легких ядер, заметное превышение выходов (гипер)ядер над результатами которого в некоторой области энергий столкновения может указывать на присутствие критической точки или спинодальной неустойчивости.

Основные положения, выносимые на защиту (1)

- Разработанная новая версия генератора THESEUS позволяет моделировать легкие (гипер)ядра на основе термодинамического подхода принципиально новым способом по сравнению с имеющимися на данный момент моделями и имеет преимущество в простоте входных параметров и предсказательной силе.
- Термодинамический подход в сочетании с гидродинамическим описанием динамики ядро-ядерных столкновений Au+Au и Pb+Pb при энергиях $\sqrt{s_{NN}} = 3 - 19.6$ ГэВ дает удовлетворительное описание экспериментальных данных (NA49 и STAR) по рождению легких ядер (дейтроны, тритоны, ядра гелия ³He и ⁴He).
- Термодинамический подход дает удовлетворительное описание экспериментальных данных (STAR) по рождению легких гиперядер (таких как гипертритий $^{3}_{\Lambda}$ H и гипергелий $^{4}_{\Lambda}$ He) в столкновениях Au+Au при энергии $\sqrt{s_{NN}} = 3$ ГэB.

Основные положения, выносимые на защиту (2)

- Выходы легких ядер слабо зависят от уравнения состояния ядерной материи в рассмотренной области энергий. В то же время направленный поток протонов и легких ядер оказался очень чувствительным к уравнению состояния при √*s_{NN}* ≥ 7.7 ГэВ, что указывает на присутствие фазового перехода в кварк-глюонную фазу при этих энергиях столкновения.
- Вклад от распадов нестабильных состояний ⁴Не* сильно влияет на выходы легких ядер при энергии √s_{NN} = 3 ГэВ и оказывается несущественным при √s_{NN} ≥ 7.7 ГэВ.
- Для хорошего описания легких ядер с массовым числом А = 2 и 3 требуется позднее (по сравнению со стандартным для адронов) замораживание, а для ⁴Не предпочтительно стандартное.

Содержание диссертации и положения, выносимые на защиту, отражают персональный вклад автора. Автор принимала активное участие во всех этапах работы. Её вклад является определяющим в разработке и тестировании программного кода, существенным в проведении численных расчётов и получении физических результатов. Автор неоднократно лично представляла полученные результаты на международных конференциях. Также автор принимала активное участие в подготовке публикаций. Все выносимые на защиту результаты получены при определяющем участии автора.

Код генератора доступен по ссылке:

https://github.com/marinakozh/3fd_generator/tree/urqmd_recalc_muB

Список публикаций

- A1. Kozhevnikova M., Ivanov Y. B. Light-nuclei production in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV within a thermodynamical approach: Bulk properties and collective flow // Phys. Rev. C. 2024. Vol. 109, no. 1. P. 014913. arXiv: 2311.08092 [nucl-th].
- A2. Kozhevnikova M., Ivanov Y. B. Production of light hypernuclei in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV within a thermodynamic approach // Phys. Rev. C. 2024. Vol. 109, no. 3. P. 034901. arXiv: 2401.04991 [nucl-th].
- A3. Kozhevnikova M., Ivanov Y. B., Karpenko I., Blaschke D., Rogachevsky O. Update of the Three-fluid Hydrodynamics-based Event Simulator: light-nuclei production in heavy-ion collisions // Phys. Rev. C. 2021. Vol. 103, no. 4. P. 044905. arXiv: 2012.11438 [nucl-th].
- A4. Blaschke D., Röpke G., Ivanov Y., Kozhevnikova M., Liebing S. Strangeness and light fragment production at high baryon density // Springer Proceedings in Physics / ed. by D. Elia, G. E. Bruno, P. Colangelo, L. Cosmai. 2020. Vol. 250. P. 183–190. arXiv: 2001.02156 [nucl-th].
- A5. Blaschke D., Friesen A. V., Ivanov Y. B., Kalinovsky Y. L., Kozhevnikova M., Liebing S., Radzhabov A., Röpke G. QCD Phase Diagram at NICA Energies: K^+/π^+ Horn Effect and Light Clusters in THESEUS // Acta Physica Polonica B, Proceedings Supplement. — 2021. — Vol. 14, no. 3. — P. 485–489. — arXiv: 2004.01159 [hep-ph].
- A6. Kozhevnikova M., Ivanov Y. B. Light-nuclei production in heavy-ion collisions within a thermodynamical approach // Phys. Rev. C. 2023. Vol. 107, no. 2. P. 024903. arXiv: 2210.07334 [nucl-th].
- A7. Kozhevnikova M., Ivanov Y. B. Light-Nuclei Production in Heavy-Ion Collisions at $\sqrt{s_{NN}} = 6.4 19.6$ GeV in THESEUS Generator Based on Three-Fluid Dynamics // Particles. 2023. Vol. 6, no. 1. P. 440–450.

Достоверность и апробация результатов

 Light clusters in nuclei and nuclear matter: Nuclear structure and decay, heavy ion collisions, and astrophysics, The European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Тренто, Италия, 2019.

Название доклада: "Production of light clusters in generator THESEUS".

 10th International Conference on New Frontiers in Physics (ICNFP 2021), Колимбари, Крит, Греция.

Название доклада: "Light-nuclei production in heavy-ion collisions in Three-fluid Hydrodynamics-based Event Simulator (THESEUS)".

 6th International Conference on Particle Physics and Astrophysics (ICPPA 2022), МИФИ, Москва, Россия

Название доклада: "Light-nuclei production in heavy-ion collisions at $\sqrt{s_{NN}} = 6.4-19.6$ GeV in THESEUS generator based on 3-fluid dynamics".

 11th International Conference on New Frontiers in Physics (ICNFP 2022), Колимбари, Крит, Греция

Название доклада: "Light-nuclei production in heavy-ion collisions at $\sqrt{s_{NN}} = 6.4-19.6$ GeV in 3-fluid dynamics".

 Workshop on physics performance studies at NICA (NICA-2022), МИФИ (виртуальная через ZOOM), Москва, Россия

Название доклада: "Light-nuclei production in heavy-ion collisions at $\sqrt{s_{NN}} = 6.4-19.6$ GeV in THESEUS generator based on 3-fluid dynamics".

 12th International Conference on New Frontiers in Physics (ICNFP 2023), Колимбари, Крит, Греция

Название доклада: "Light-nuclei production in heavy-ion collisions at the energy range of $\sqrt{s_{NN}} = 3-19.6$ GeV in generator THESEUS based on 3-fluid dynamical model".

 JINR Association of Young Scientists and Specialists Conference "Alushta-2023", ОИЯИ, Алушта, Россия

Название доклада: "Light-nuclei production in heavy-ion collisions at NICA energies in generator THESEUS based on 3-fluid dynamical model".

 Workshop on physics performance studies at NICA (NICA-2024), (виртуальная через ZOOM), Москва, Россия

Название доклада: "Proton, Lambda and light (hyper)nuclei production in Au+Au collisions at 3 GeV. Bulk properties and directed flow".

 61st meeting of the PAC for Particle Physics (2025), Дубна, Россия, стендовый доклад.

Название: "Modelling of light (hyper)nuclei production in heavy-ion collisions at NICA energies based on generator THESEUS".

 Методический семинар: EMMI Nuclear and Quark Matter seminar (GSI), онлайн, 2021.

Тема семинара: "Update of the Three-fluid Hydrodynamics-based Event Simulator (THESEUS) and light-nuclei production in heavy-ion collisions".

11. Общелабораторный семинар ЛФВЭ, 2025.

Тема семинара: "Моделирование легких ядер и гиперядер в столкновениях тяжелых ионов в термодинамическом подходе при помощи генератора THESEUS"(по материалам кандидатской диссертации).

Основные итоги данного исследования

- Суммируя все вышесказанное, можно заключить, что термодинамический подход дает удовлетворительное описание всего массива данных по рождению легких (гипер)ядер в ядро-ядерных столкновениях при энергиях столкновения $\sqrt{s_{NN}} = 3 - 19.6$ ГэВ. Это описание в совокупности не хуже, чем то, что достигается в подходах, основанных на коалесценции, и требует значительно меньшее число дополнительных параметров.
- Термодинамический подход требует всего один дополнительный параметр (плотность энергии позднего замораживания), компенсирующий неспособность UrQMD описывать эволюцию легких (гипер)ядер на стадии дожига.
- С ростом энергии столкновения качество термодинамического описания легких (гипер)ядер ухудшается, что, видимо, связано с быстрым уменьшением их множественности. При малых множественностях ухудшается применимость описания, основанного на макроканоническом ансамбле, т.е. термодинамики.

Спасибо за внимание!

Дополнительные материалы

Спинодальная область

Фазы в 3FD

Yu.B. Ivanov, Phys.Lett.B 726 (2013) 422-426

FIG. 2: Phase diagram for the 2-phase EoS (solid thick line) and crossover EoS (shaded band) in terms of the temperature (T) and the baryon chemical potential (μ_B) and the freeze-out border (solid thick line with dots) deduced from experimental data within the statistical model [17]. For the crossover EoS the borders of the transition band correspond to values of the QGP fraction $W_{QGP} = 0.1$ and $W_{QGP} = 0.5$. Dynamical trajectories of the matter in the central box of the colliding nuclei for three EoS's are also presented. The trajectories correspond to central collisions of Au+Au at energies $\sqrt{s_{NN}} =$ 2.7 and 3.3 GeV (b = 2 fm) and Pb+Pb at energies 6.4 and 17.3 GeV (b = 2.4 fm). Only expansion stages of the evolution are displayed. The freeze-out points corresponding to displayed collisions (the incident energy rises from the right to the left along the freeze-out border) are taken from Ref. [17].

Отношения выходов частиц

На отношение $N(t) \times N(p)/N^2(d)$ сильно влияют протоны, полученные от слабых распадов. Превышение предсказанного значения: 0.29 (Shuryak E., Torres-Rincon J. M// Eur. Phys. J. A. — 2020. — Vol. 56, no. 9. — Р. 241), т.к. есть вклад от околоцентральных источников, а не только центральных.

STAR: Zhang D. Light Nuclei (d, t) Production in Au + Au Collisions at $\sqrt{s_{NN}} = 7.7-200$ GeV // Nucl. Phys. A / ed. by F. Liu, E. Wang, X.-N. Wang, N. Xu, B.-W. Zhang. -2021. - Vol. 1005. - P. 121825. - arXiv: 2002.10677 [nucl-ex].

Anticic T. [et al.]. Production of deuterium, tritium, and He3 in central Pb + Pb collisions at 20A,30A,40A,80A, and 158A GeV at the CERN Super Proton Synchrotron // Phys. Rev. C. — 2016. — Vol. 94, no. 4. — P. 044906. — arXiv: 1606.04234 [nucl-ex].

THESEUS-v2: Kozhevnikova M., Ivanov Y. B. Phys. Rev. C. — 2023. — Vol. 107, no.2. — P. 024903.

NA49:

Модели для описания легких (гипер)ядер

🗆 Коалесценция

модель трехжидкостной гидродинамики (3FD), двухжидкостная модель, JAM, UrQMD

🛛 Термодинамика

Статистическая модель, Blast-Wave. Адроны и легкие ядра моделируются единообразно, но термодинамические величины (температура, химический потенциал) фитируются.

Микроскопический динамический подход

SMASH, PHQMD, LQMD, стохастический кинетический подход

Tермодинамика в THESEUS

Адроны и легкие ядра моделируются на одной основе, термодинамические величины (температура, химический потенциал) вычисляются в 3FD. Не нужны дополнительные параметры!

THESEUS

- На выходе мы имеем Лагранжевы тестовые частицы (капли) для каждой жидкости α(= p, t or f).
- Капля = элемент гиперповерхности при замораживании
- Наблюдаемые = интегралы от адронных функций распределения по гиперповерхности при замораживании.
- Такие величины не удобны для применения экспериментальных аксептансов!

- THESEUS = 3FD + процедура Монте-Карло + дожиг UrQMD;
- Используются гиперповерхности при замораживании из 3FD (Т, ,) для генерации частиц (, ,);
- На выходе: дерево в ROOT-файле, содержащее все сгенерированные частицы.
- Можно применять аксептанс.

Модель 3FD: уравнения состояния

Адронное: имеются только адронные состояния (адронный газ), отсутствует фазовый переход Mishustin I. N., Russkikh V. N., Satarov L. M., Sov. J. Nucl. Phys. Vol. 54. P. 260–314 (1991)

С фазовым переходом 1-го рода: адронные состояния + КГП A. Khvorostukhin, V.V. Skokov, V.D. Toneev, K. Redlich, EPJ C48, 531 (2006)

С кроссовером: адронные состояния + КГП с сосуществованием фаз (кроссовером) в широком диапазоне температур и барионных плотностей

A. Khvorostukhin, V.V. Skokov, V.D. Toneev, K. Redlich, EPJ C48, 531 (2006)

Рис. 3: Различные уравнения состояния на примере зависимости давления от барионной плотности при различных температурах.

Быстротные распределения (подробнее)

Ivanov Y. B., Soldatov A. A. Eur. Phys. J. A. — 2017. — Vol. 53, no. 11. — P. 218

Anticic T. [et al.]. Phys. Rev. C. — 2016. — Vol. 94, no. 4. — P. 044906.

Рис.: Быстротные распределения легких ядер. Приведены результаты со стандартным замораживанием (бледно-голубые линии) и поздним (синие линии), без вклада возбужденных низколежащих резонансов * (черные линии), экспериментальные данные NA49 и результат чистой 3FD.

Спектры по поперечным массам

Поперечная масса:

$$m_T^2$$

= $m^2 + p_x^2 + p_y^2$

Ivanov Y. B., Soldatov A. A. Eur. Phys. J. A. — 2017. — Vol. 53, no. 11. — P. 218

Anticic T. [et al.]. Phys. Rev. C. — 2016. — Vol. 94, no. 4. — P. 044906.

Рис.: Спектры по поперечным массам для дейтронов (верхний ряд) и (нижний ряд) в центральных столкновениях Pb+Pb при различных энергиях, рассчитанные с уравнением состояния с кроссовером. Показаны результаты, рассчитанные со стандартным замораживанием (бледно-голубые линии) и поздним (синие линии), результаты 3FD (фиолетовые пунктирные линии) и экспериментальные данные NA49.

Отношения выходов частиц

STAR:

Zhang D. Light Nuclei (d,t) Production in Au + Au Collisions at $\sqrt{s_{NN}} = 7.7-200$ GeV // Nucl. Phys. A / ed. by F. Liu, E. Wang, X.-N. Wang, N. Xu, B.-W. Zhang. — 2021. — Vol. 1005. — P. 121825. — arXiv: 2002.10677 [nucl-ex].

NA49:

Anticic T. [et al.]. Production of deuterium, tritium, and He3 in central Pb + Pb collisions at 20A,30A,40A,80A, and 158A GeV at the CERN Super Proton Synchrotron // Phys. Rev. C. — 2016. — Vol. 94, no. 4. — P. 044906. — arXiv: 1606.04234 [nucl-ex].

Рис.: Зависимость от энергии отношений выходов d/p, t/p, и t/d в области центральных быстрот для центральных (0-10%) Au+Au столкновений. Моделирование проведено при b = 4 фм для Au+Au и при b = 3 фм для Pb+Pb в бине по быстроте |y| < 0.5. Рис.: Зависимость от энергии отношения $N(t) \times N(p)/N^2(d)$ в области центральных быстрот для центральных столкновений Au+Au и Pb+Pb. Моделирование при b = 4 фм для Au+Au, при b = 3 фм ($\sqrt{s_{NN}} < 17.4 \Gamma$ эВ) и при b = 4.6 фм ($\sqrt{s_{NN}} = 17.4 \Gamma$ эВ) для Pb+Pb в бине по быстроте |y| < 0.5. N(p) включает протоны, полученные без вклада от слабых распадов (две верхние линии, помеченные крестами) и без этого вклада (две нижние линии)

Показано, что на отношение $N(t) \times N(p)/N^2(d)$ сильно влияют протоны, полученные от слабых распадов. Вычисленный результат с протонами без вклада от слабых распадов превышает предсказанное значение: 0.29 (Shuryak E., Torres-Rincon J. M// Eur. Phys. J. A. — 2020. — Vol. 56, no. 9. — Р. 241), т.к. есть вклад от околоцентральных источников, а не только центральных. Необходимо корректно учитывать слабые распады, а UrQMD не является достаточно точной для этого.

Коллективные потоки: определение

Одночастичное распределение частиц, разложенное в ряд Фурье по азимутальному углу импульса частицы :

где, а усреднение происходит по всем рассматриваемым частицам во всех событиях.

Здесь первый коэффициент направленный поток, а второй эллиптический поток.

В THESEUS потоки рассчитываются через сумму по адронам.

Рис.: Схема сталкивающихся ядер.

Направленный поток

Рис.: Направленный поток для дейтронов (верхний ряд) и протонов (нижний ряд) в зависимости от быстроты в полуцентральных столкновениях (b = 6 фм) столкновений Au+Au, полученный для различных энергий и двух уравнений состояния: с фазовым переходом 1-го рода и с кроссовером.

Для сравнения приведены данные STAR:

Adam J. [et al.]. // Phys. Rev. C. — 2020. — Vol. 102, no. 4. — P. 044906.

Adamczyk L. [et al.]. // Phys. Rev. Lett. — 2014. — Vol. 112, no. 16. — P. 162301.

Модель не смогла должным образом описать потоки для дейтронов.

Может быть, это связано с критической точкой КХД фазовой диаграммы в этой области энергий

STAR preliminary data: Pandav, plenary talk at CPOD 2024, https://conferences.lbl.gov/event/1376/contributions/8772/

3 ГэВ: спектры по поперечному импульсу

Рис.: Результаты THESEUS спектры по поперечному импульсу для протонов и легких ядер (дейтронов, тритонов, ,) в бине в сравнении с данными STAR (arXiv: 2311.11020 [nucl-ex]). Расчеты выполнены для трех различных уравнений состояния и при позднем замораживании (). Для сравнения показаны результаты при стандартном замораживании () для уравнения состояния с кроссовером.

Моделирование с поздним замораживанием дает разумный и, в целом, лучший результат, чем со стандартным замораживанием. Нет зависимости от уравнения состояния – вещество эволюционирует в адронной фазе. Завышение спектров при больших эта неточность связана с особенностью модели 3FD.

3 ГэВ: направленный поток

Рис.: Результаты THESEUS по протонов и легких ядер (d, ,) для различных вариантов адронного уравнения состояния: стандартного (K = 190 МэВ), очень «мягкого» (K = 130 МэВ) и «жесткого» (K = 380 МэВ).

- Для легких ядер используется позднее замораживание () и стандартное ().
- Показан поток протонов, полученный из чистой 3FDмодели (без дожига).
- Жесткость характеризуется коэффициентом несжимаемости ядерной материи:

где плотность энергии ядерной материи при нормальная ядерная плотность. Стандартное значение для адронного уравнения состояния: К = 190 МэВ (довольно «мягкое»).

 Стандартное значение К = 190 МэВ кажется наиболее оптимальным.

Эллиптический поток

Рис. 26: Эллиптический поток протонов и легких ядер в зависимости от быстроты в полуцентральных (b = 6 фм) столкновениях Au+Au при энергии $\sqrt{s_{NN}} = 3 \text{ ГэB}$. Представлены результаты для трёх различных уравнений состояния. Для дейтронов и ³Не используется позднее замораживание, а для ⁴Не — стандартное. Также для них приведен расчёт с переходом 1-го рода со стандартным замораживанием. Протоны рассчитаны со стандартным замораживанием и дожигом UrQMD. Также для них показан результат без дожига. Данные STAR взяты из работы [33; 152]. Экспериментальные точки обозначены закрашенными символами, а отраженные симметрично нулевой быстроты — незакрашенными.

Эллиптический поток

Рис. 27: То же, что и на Рисунке 26, но для различных вариантов адронного уравнения состояния. Результаты для стандартного адронного уравнения состояния (K = 190 МэB) показаны для позднего замораживания для всех легких ядер жирной штрихпунктирной линией и для стандартного замораживания для ⁴He – тонкой штрихпунктирной линией. Также показаны результаты для "жесткого" уравнения состояния (K = 380 МэB): для дейтронов и ³He при позднем замораживании и для всех легких ядер при стандартном замораживании. Расчет для протонов выполнен при стандартном замораживании и последующем дожиге UrQMD, а также показан протонный поток для "жесткого" уравнения состояния (K = 380 МэB) до дожига (сплошная линия).

Направленный поток

Рис.: Направленный поток для гиперядер в сравнении с данными STAR. Используются три различных уравнения состояния.

- Используется стандартное замораживание с.
- Нет существенного отличия по сравнению с результатами с поздним замораживанием → барионный направленный поток формируется на ранней стадии эволюции системы.

Выводы:

- Представлен новый подход к образованию легких (гипер)ядер, в котором рождение легких (гипер)ядер и адронов рассматривается единым образом. Этот подход реализован в обновленной версии генератора THESEUS-v2. Это более экономный способ описания образования легких (гипер)ядер по сравнению с коалесценцией и обладающий большей предсказательной способностью.
- С помощью новой версии генератора, THESEUS-v2, получены выходы легких ядер (быстротные распределения) в столкновениях Au+Au и Pb+Pb при энергиях столкновения √s_{NN} = 3 19.6 ГэВ и при различных центральностях столкновений, а также p_T и m_T -спектры, коллективные потоки. Сделан вывод о том, что дейтроны, тритоны и ядра ³Не лучше описываются с поздним замораживанием, а ядра ⁴Не со стандартным, что отражает разницу в их энергиях связи. В целом, THESEUS-v2 даёт хоть и неидеальное, но разумное описание данных.
- Найдено, что при энергиях √s_{NN} > 6 ГэВ вклад от распадов нестабильных ядер ⁴He* пренебрежимо мал для дейтронов при центральных быстротах, но существенен для тритонов и ядер ³He. При быстротах в областях фрагментации мишени/снаряда он более значителен. При энергии √s_{NN} = 3 ГэВ такой вклад более существенен: ~20% для дейтронов и 50–100% (в зависимости от быстроты) для ³He.
- Моделирование легких гиперядер в столкновениях Au+Au при энергии $\sqrt{s_{NN}} = 3$ ГэВ показало, что THESEUS-v2 дает хорошее описание и данных по гиперядрам.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

SCHEDULE SLIDE

Lorem ipsum dolor sit amet, consectetur adipisicing elit

lcon

You can resize these icons keeping the quality.

You can change the stroke and fill color; just select the icon and click on the paint bucket/pen.

(A) ۲ ,O 24 . - 0 ____ () j € -````. • D JULIA **U U** Ø 0;;;;;; J O • Å 2 2 + × - : Å Ś 1111-5 ୖୄୄୢୣୄ VV. 7 **\$** 1 Ö -0

lcon

You can resize these icons keeping the quality.

You can change the stroke and fill color; just select the icon and click on the paint bucket/pen.

SECTION BREAK SLIDE TITLE

01.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

02.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

03.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

04.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

ABOUT US

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

SLIDES TITLE

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Enter Your Title Here

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

SLIDES TITLE HERE

Lorem ipsum dolor sit amet, consectetur adipisicing elit

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

DATA ANALYSIS

Lorem ipsum dolor sit amet, consectetur adipisicing elit

C

0

Place subtitle text here

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore

BASED ON PROJECTIONS

Lorem ipsum dolor sit amet, consectetur adipisicing elit

KEYWORD SLIDE TITLE

Lorem ipsum dolor sit amet, consectetur adipisicing elit

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit

Subject Title

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

