Национальный исследовательский центр «Курчатовский институт»

Диссертация на соискание учёной степени кандидата физико-математических наук по специальности 1.3.18 Физика пучков заряженных частиц и ускорительная техника

Разработка и исследование лазерно-плазменного генератора многозарядных ионов для тяжелоионного инжектора И-3, И-4

Выступающий: А. А. Лосев Руководитель: д.ф.-м.н. Ю. А. Сатов Работа выполнена в НИЦ «Курчатовский институт»

Москва, 2025

Актуальность разработки лазерно-плазменного источника ионов определяется широтой применения ускоренных ионных пучков:

- генерация экстремальных состояний вещества
- моделирование радиационных повреждений в электронных компонентах и материалах
- модификация материалов и ионная имплантация
- ионная лучевая терапия
- управляемый термоядерный синтез с помощью ускоренных пучков тяжелых ионов

Актуальность работы

Принципиальная схема лазерно-плазменного источника ионов

(Быковский Ю.А. и др. Патент 324938, 1969) Возможности лазерно-плазменного источника ионов:

- возможность оперативно менять мишень и условия ее облучения;
- широкий выбор материала мишени (различные химические элементы и агрегатные состояния);
- высокая степень ионизации частиц;
- высокая плотность расширяющейся плазмы позволяет извлекать сильноточный пучок короткой длительности;

- Разработка лазерно-плазменного источника ионов на основе импульсно-периодического лазера «МАЛЫШ» до возможности эффективной работы с ускорителями И-3, И-4 в области прикладных задач.
- Разработка методики восстановления энергетического спектра разлета ионов (включая соответствующие компьютерные коды) позволяющей проводить мониторинг характеристик ионов во время работы источника и задавать входные данные для программ компьютерного моделирования физики пучков ионов.

- Реализовать контроль и анализ параметров лазерного импульса в импульсно-периодическом режиме работы лазерной установки для получения оптимальных условий по мощности и длительности излучения, воспроизводимости параметров с максимальным ресурсом наработки.
- Изучить энергетические и зарядовые распределения ионов углерода в лазерной плазме и найти условия облучения для достижения необходимых характеристик пучка для инжекции в ускорители И-3, И-4.
- **8** Произвести ускорение пучка ионов углерода в ускорителях И-3, И-4.
- Разработать программное обеспечение для обработки исходных экспериментальных данных, для задания входных данных для программ численного моделирования Kobra3-INP и Dynamion.

Импульсно-периодический CO_2 -лазер

1 – электроразрядные модули,

2 – генераторы импульсного напряжения,

- 3 вакуумно-газовый блок,
- 4 блок запуска и синхронизации,
- 5 рама резонатора,

6 – трубопроводы контура охлаждения и регенерации газовой смеси.

Временная форма импульса излучения CO_2 -лазера:

- а усредненная по пичковой структуре,
- б оцифрованная осциллограмма,
- $E_{\text{имп}}$ энергия в импульсе,

 τ_{FWHM} – длительность импульса на полувысоте,

 P_{max} – пиковая мощность,

 ε_{peak} – доля энергии в первом пике

Оптимизация состава лазерной смеси CO₂/N₂/He

Пункты научной новизны и практической ценности

- Оптимизация условий работы импульсно-периодического CO₂-лазера в режиме свободной генерации с помощью схемы контроля параметров излучения позволила создать генератор с удельной мощностью излучения 190 МВт с литра активного объема в импульсе с длительностью 28 нс на полувысоте, что является рекордным по литературным источникам.
- Создан лазерный генератор с мощностью излучения до 100 МВт и энергией до 10 Дж работающий с частотой повторения 0.5 Гц для широкого круга применений.
- Реализован контроль и анализ лазерных параметров в импульсно-периодическом режиме работы, обеспечена их воспроизводимость.

Времяпролетная методика исследования плазмы

e d

Эскиз цилиндрического дефлектора:

1 – входная щель; 2 – промежуточная щель;

3 — выходная щель; $r_1 = 102.5$ мм,

 $r_2 = 97.5 \text{ мм} -$ радиусы внешнего и внутреннего электродов; *l* – расстояние от выходной щели до края электродов; d_1 , d_2 – зазоры.

А.А. Лосев, НИЦ «Курчатовский институт»

1 - разрядные модули, 2 - зеркала резонатора, 3 - поворотные зеркала, 4 - зеркальный экспандер, 5 - входное окно, 6 - вакуумная камера, 7 - мишень, 8 - объектив, 9 - дрейфовая труба, 10 - электростатический дефлектор, 11 - вторичноэлектронный умножитель. Москва, 2025

Стр. 9 из 29

Времяпролетная методика исследования плазмы

Вычисление времени вылета ионов

Сигнал ВЭУ для ионов углерода. Время прилета связано с зарядовым состоянием и потенциалом электродов анализатора.

- Проводятся измерения времени пролета со вставкой l_{вст} в дрейфовую трубу и без нее.
- Вычисление средней за пролет скорости данного иона v и длины дрейфа l_{drift}:

$$\begin{cases} vt_{\text{изм}} = l_{drift} \\ vt_{\text{вст}} = l_{drift} + l_{\text{вст}} \end{cases}$$

- Через соотношение $E = \frac{mv_{att}^2}{2} = GzU$ известна скорость ионов. Расчетное время прилета $t_{pacy} = \frac{l_{drift}}{v_{att}}$.
- Разность $t_{\rm H3M} t_{\rm pacu}$ дает время вылета соответствующих ионов, синхронизованное с импульсом лазерного излучения.

Вычисление времени вылета ионов

На графиках представлена разность $t_{{}_{\rm H3M}}-t_{{}_{\rm pacy}}$ для ионов С $^{2+}-$ С $^{5+}$

- Низкоэнергетическая группа ионов генерируется на всей протяженности облучения в течение 500 нс
- Высокоэнергетические ионы возникают преимущественно во время пика облучения.
- Разброс времен вылета минимален для высокоэнергетических многозарядных ионов.
- Для ионов низкой энергии, с низким зарядовым состоянием, интервал вылета максимален.

Москва, 2025

 Метод диагностики ионной компоненты потока лазерной плазмы, основанный на одновременной регистрации сигналов времяпролетного анализатора ионов и детектора формы лазерного импульса. Он позволяет получить не только распределение частиц по зарядовым состояниям и парциальные токи для каждого заряда, но и времена вылета ионов из мишени на масштабе лазерного импульса, что дает уникальную возможность уточнить энергии генерируемых частиц каждого заряда. Применение разработанного метода позволяет получить как информацию о процессах генерации ионов в плазме, так и информацию, необходимую для формирования пучка ионов для дальнейшей инжекции в ускоритель. Метод защищен патентом Российской Федерации.

Схема установки И-4

1 – лазер, 2 – поворотные зеркала, 3 – вакуумная камера, 4 – мишень,
5,6 – электроды системы извлечения, 7 – электростатическая сеточная линза,
8 – ускоряющая структура ПОКФ.

И-4 – ускоряющая секция ПОКФ с рабочей частотой 81.36 МГц, способная по расчетам при проектировании ускорять сильноточный (десятки миллиампер) пучок ионов с отношением $z/A \ge 1/3$ до энергии 1.6 МэВ/н.

Влияние металлических сеток

Сетка в положительном электроде системы извлечения

Трехэлектродная система извлечения пучка и электростатическая линза. Стрелкой показано направление падающей плазмы. Справа показано начало ускоряющей структуры. Доля прошедших ионов углерода и вольфрама с разным зарядом для разных сеток

Параметры сеток

Сетка	Прозрачность	Период
	%	мкм
№ 1 Мелкая	90	500
№ 2 Крупная	96	2000
№ 3 Самая мелкая	98	83

Потери увеличиваются

- с увеличением заряда иона
- с уменьшением периода сетки
- для тяжелых ионов

Влияние металлических сеток

Плотность тока лидирующей части пучка ионов углерода и вольфрама при отсутствии сетки, с мелкой сеткой и с крупной сеткой Экспериментально обнаруженный эффект воздействия на характеристики пучка металлических сеток, устанавливаемых в высоковольтном электроде системы экстракции, связанный с распылением материала сетки и последующим рассеянием ионного пучка на образовавшемся атомарном облаке. Эффект усиливается с увеличением массового числа ионов пучка и с уменьшением периода расположения проволочек в сетке, но слабо зависит от геометрической прозрачности сетки. Получены данные для разработки высоковольтной системы экстракции источника ионов.

Плотность парциальных токов ионов углерода

Траектории ионов углерода в системе экстракции.

Траектории ионов углерода в электростатической линзе.

Фазовый портрет пучка после прохождения линзы на входе в ускоритель. Стр. 19 из 29

- Из измеренных в эксперименте характеристик плазмы сформированы необходимые входные данные для программы KOBRA3-INP.
- Расчет процесса извлечения пучка и прохождения электростатической линзы.
- Полученный в KOBRA3 результат использован в расчете динамики пучка с помощью программы Dynamion.

Ускорение пучка ионов углерода в И-4

Сравнение результатов расчета с измерениями

Параметр	Расчет	Измерение
Полный ток на входе, мА	14.4	25.8 (максимальное)
$arepsilon_{4rms}$ на входе, мм \cdot мрад	760	560, 520
Полный ток на выходе, мА	5.7	7.8 (максимальное)

А.А. Лосев, НИЦ «Курчатовский институт»

- Результаты «сквозного» численного моделирования динамики пучка ионов углерода С⁴⁺ от плазменной границы до выхода ускорителя-инжектора И-4, проведенного с учетом экспериментально полученного распределения ионов по зарядовым состояниям и энергиям в генерируемой лазерным импульсом плазме.
- Результаты ускорения пучка ионов углерода С⁴⁺ в ускорителе И-4 при настройках систем ускорителя, установленных на основании «сквозного» моделирования, подтвердившие его правильность.

Облучение кремниевых диодов на ускорителе И-3

- Источник настроен на получение с максимальной долей ионов С³⁺ и С⁴⁺.
- Максимальная амплитуда полного тока 120 мА, длительность ≈ 20 мкс на полувысоте.
- Успешно проведены длительные сеансы облучения кремниевых пластин с флюенсом (1 – 4) · 10¹² см⁻².

Облучение кремниевых диодов на ускорителе И-3

- Облучение для управления временем жизни носителей заряда в полупроводниках
- Уменьшение времени переключения облученных диодов

Параметры облученных кремниевых диодов

$_{rr}$, нс	I_R , нА	U_F , V
~ 100	< 1	0.81
$.8 \pm 2$	3.3 ± 0.3	0.78
7 ± 0.2	4.5 ± 0.4	0.75
9 ± 0.3	1.0 ± 0.1	0.76
	rr, HC ~ 100 $.8 \pm 2$ $.7 \pm 0.2$ $.9 \pm 0.3$	$\begin{array}{c c} r_{Tr}, \mbox{ HC} & I_{R}, \mbox{ HA} \\ \sim 100 & <1 \\ 8\pm2 & 3.3\pm0.3 \\ 7\pm0.2 & 4.5\pm0.4 \\ 9\pm0.3 & 1.0\pm0.1 \end{array}$

 t_{rr} – время обратного восстановления диода,

 I_R – постоянный обратный ток диода (ток утечки),

 U_F – прямое напряжение диода при протекании прямого тока 10 мА

Сигнал энерго
анализатора для ионов висмута с энергией настройк
и $E=4.0z\ {\rm \kappa >B}$

Парциальные токи многозарядной части ионов висмута

А.А. Лосев, НИЦ «Курчатовский институт»

Москва, 2025

Основные публикации

- Характеристики импульсно-периодического CO₂-лазера для приложений в области лазерной плазмы. / Ю. А. Сатов, А. В. Шумшуров, А. А. Васильев, А. А. Лосев, А. Н. Балабаев, И. А. Хрисанов, В. К. Рерих // Приборы и техника эксперимента. 2016. № 3. С. 83—90
- Развитие техники времяпролетных измерений в плазме, создаваемой CO₂-лазером. / Ю. А. Сатов, А. В. Шумшуров, А. А. Васильев, А. А. Лосев, А. Н. Балабаев, И. А. Хрисанов, К. Н. Макаров, В. К. Рерих // Приборы и техника эксперимента. 2017. № 4. С. 108—114
- В Измерение эмиттанса методом реррег-рот на лазерно-плазменном источнике ионов для ускорителя И-4. / А. А. Лосев, Ю. А. Сатов, А. В. Шумшуров, А. Н. Балабаев, И. А. Хрисанов, А. А. Васильев // Ядерная физика и инжиниринг. 2021. Т. 12, № 2. С. 124—128
- Влияние металлических сеток на характеристики ионного пучка в лазерно-плазменном источнике. / Ю. А. Сатов, А. В. Шумшуров, А. А. Лосев, А. Н. Балабаев, И. А. Хрисанов, А. А. Васильев // Приборы и техника эксперимента. 2022. № 1. С. 82—91
- Boint defect creation by proton and carbon irradiation of α Ga₂O₃. / A. Y. Polyakov [и др.] // Journal of Applied Physics. 2022. Т. 132, № 3. C. 035701
- б Численное моделирование системы извлечения пучка и сеточной электростатической линзы для линейного ускорителя И-4. / А. А. Лосев, Г. Н. Кропачев, Е. Р. Хабибуллина, А. В. Зиятдинова // Ядерная физика и инжиниринг. 2024. Т. 15, № 3. С. 254—258

Зарегистрирован 1 патент на изобретение (№ 2649914 С1).

А.А. Лосев, НИЦ «Курчатовский институт»

- Молодежные конференции по теоретической и экспериментальной физике ИТЭФ 2016, 2017, 2018, 2019, 2020, 2021 (Москва);
- X Всероссийская школа для студентов, аспирантов, молодых ученых и специалистов по лазерной физике и лазерным технологиям (Саров, 17–20 мая 2016 г.);
- XXVI Russian Particle Accelerator Conference RuPAC-2018 (Протвино, 1–5 октября 2018 г.);
- 18th International Conference on Ion Sources (Ланьчжоу, Китай, 1–6 сентября 2019 г.);
- VI Международная конференция ЛаПлаз 2020 (Москва, 11–14 февраля 2020 г.);
- 19th International Conference on Ion Sources (В дистанционном формате, 20–24 сентября 2021 г.);
- IX Международная конференция «Лазерные, плазменные исследования и технологии» ЛаПлаз-2023» (Москва, 28–31 марта 2023 г.);
- XXIV Харитоновские тематические научные чтения по проблемам ускорительной техники и физики высоких энергий (Саров, 24–28 июля 2023 г.);
- XIV Всероссийская школа НЦФМ по лазерной физике и лазерным технологиям (Саров, 18–22 сентября 2023 г.);
- XVIII Курчатовская междисциплинарная молодёжная научная школа НИЦ «Курчатовский институт» (Москва, 27–30 мая 2025 г.).

- Метод диагностики ионной компоненты потока лазерной плазмы, основанный на одновременной регистрации сигналов времяпролетного анализатора ионов и детектора формы лазерного импульса. Он позволяет получить не только распределение частиц по зарядовым состояниям и парциальные токи для каждого заряда, но и времена вылета ионов из мишени на масштабе лазерного импульса, что дает уникальную возможность уточнить энергии генерируемых частиц каждого заряда. Применение разработанного метода позволяет получить как информацию о процессах генерации ионов в плазме, так и информацию, необходимую для формирования пучка ионов дльнейшей инжекции в ускоритель. Метод защищен патентом Российской Федерации.
- Экспериментально обнаруженный эффект воздействия на характеристики пучка металлических сеток, устанавливаемых в высоковольтном электроде системы экстракции, связанный с распылением материала сетки и последующим рассеянием ионного пучка на образовавшемся атомарном облаке. Эффект усиливается с увеличением массового числа ионов пучка и с уменьшением периода расположения проволочек в сетке, но слабо зависит от геометрической прозрачности сетки. Получены данные для разработки высоковольтной системы экстракции источника ионов.
- 3 Результаты «сквозного» численного моделирования динамики пучка ионов углерода С⁴⁺ от плазменной границы до выхода ускорителя-инжектора И-4, проведенного с учетом экспериментально полученного распределения ионов по зарядовым состояниям и энергиям в генерируемой лазерным импульсом плазме.
- Результаты ускорения пучка ионов углерода С⁴⁺ в ускорителе И-4 при настройках систем ускорителя, установленных на основании «сквозного» моделирования, подтвердившие его правильность.

- Оптимизация условий работы импульсно-периодического CO₂-лазера в режиме свободной генерации с помощью схемы контроля параметров излучения позволила создать генератор с удельной мощностью излучения 190 МВт с литра активного объема в импульсе с длительностью 28 нс на полувысоте, что является рекордным по литературным источникам.
- В результате усовершенствования времяпролетной методики диагностики ионных пучков впервые получены экспериментальные данные по моментам генерации (вылета) ионов в плазме углеродной мишени на масштабе импульса облучения, типичного для CO₂-лазера в режиме свободной генерации, с пиковой плотностью мощности на поверхности мишени $\approx 10^{11}$ Bt/cm².

Научная и практическая значимость

- Создан лазерный генератор с мощностью излучения до 100 МВт и энергией до 10 Дж работающий с частотой повторения 0.5 Гц для широкого круга применений.
- 2 Создан лазерный источник ионов вольфрама W⁷⁺ с плотностью тока $4.2\cdot 10^{-2}$ мА/см² и углерода С⁴⁺ с плотностью тока 27.7 ± 2 мА/см² для инжекторов И-3, И-4.
- Разработана и проверена в большом числе экспериментов, отличающихся типом ионов и плотностями потока излучения в интервале 10¹⁰ – 10¹³ Вт/см², времяпролетная диагностика ионных пучков, основанная на оперативной обработке данных электростатического анализатора, детектора лазерного излучения и коллектора полного тока с помощью разработанного автором компьютерного кода.
- 4 На основе экспериментальных данных получены рекомендации для конструкторской разработки системы экстракции и формирования пучка, связанные с использованием металлических сеток.
- Б Полученный из лазерно-плазменного источника пучок ионов углерода успешно применен в экспериментах на ускорителе И-3 для имплантации в полупроводники (кремниевые диоды).
- Отутем численного моделирования распространения пучка ионов С⁴⁺ с пиковым током 25.8 мА на входе в инжектор И-4 получено согласование с током на выходе 7.8 мА. Найдено место в системе транспортировки пучка низкой энергии, создающее потери при согласовании с ускорителем.
- Разработан программно-аппаратный комплекс для управления длиной резонатора задающего генератора лазерной системы «Фокус», обеспечивающий работу лазера в режиме одной продольной моды для получения максимальной стабильности интенсивности излучения.