# Momentum spread measurement method for the space charge-dominated ion beams

29th International Scientific Conference of Young Scientists and Specialists (AYSS-2025)

D.K. Chumakov<sup>1,2</sup>, V.A. Lebedev<sup>2</sup>, A.S. Sergeev<sup>2</sup>, Yu. V. Prokofichev<sup>2</sup>, V.S. Shpakov<sup>2</sup>

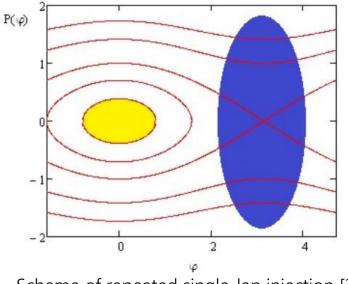
<sup>1</sup> National Research Tomsk Polytechnic University

<sup>2</sup> Joint Institute for Nuclear Research

<u>chumadan@jinr.ru</u>

#### Why do we need to know momentum spread?

- Intensity of beam is crucial for colliders at each stage;
- NICA Booster synchrotron [1]:
  - accumulates ions (up to 10x);
  - accelerates beam (3.2 MeV/n  $\rightarrow$  578 MeV/n);
  - extracts beam to Nuclotron;

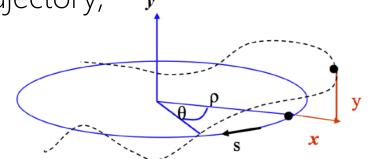


Scheme of repeated single-lap injection [2]

- Beam fills in available phase space;
- No accumulation using only magnetic optics we need dissipative force;
- Cooling exploits such forces, reduces volume of beam in phase space;
- <u>Injection</u> → <u>Cooling</u> → <u>Phase space reduced</u> → Repeat;
- Low momentum spread enough space for new injection

#### Particle distribution evolution

- Coordinate frame moves along ideal synchronous particle trajectory;
- Longitudinal coordinate  $\underline{s}$  w.r.t. synchronous particle OR phase  $\underline{\phi}$  w.r.t. synchronous particle[3]



- Particle distribution function  $f = f(s, v, t) \rightarrow f(\phi, \delta, t)$ ;
- $\delta = \frac{\Delta p}{p}$  is relative momentum spread of particle;
- $\sigma_{\delta}$  is RMS momentum spread;
- Fokker-Planck equation shows evolution of particle distribution function [4]
- Haissinski equation is its stationary solution[4]

linear density 
$$f(\phi) = f_0 \cdot \exp\left(-\frac{U(\phi)}{kT_\parallel}\right) = f_0 \cdot \exp\left(-\frac{U_{RF}(\phi) + U_{SC}(\phi)}{kT_\parallel}\right)$$

 $f_0$  is normalization factor  $(\int_{-\pi}^{\pi} f(\phi) d\phi = 1)$ ;  $kT_{\parallel}$  is longitudinal beam temperature (we determine it in terms of  $\sigma_{\delta}$ );  $U(\phi)$  is the potential part of longitudinal beam Hamiltonian

#### Longitudinal beam Hamiltonian with space charge

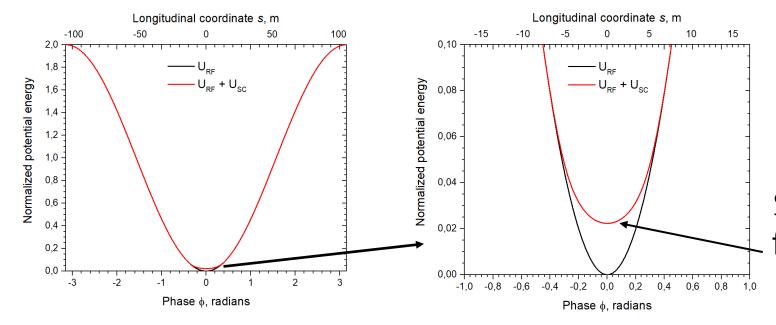
$$H(\delta,\phi) = \frac{1}{2}h\omega_0\eta\delta^2 + \frac{ZeV_{RF}\omega_0}{2\pi\beta^2E}(1-\cos\phi) + U_{SC}(\phi)$$
 Kinetic term Potential term, RF bunching term, space charge 
$$U_{SC}(\phi) = \frac{Ze \cdot h^2\omega_0N_0}{V_{RF}} \cdot \left(\frac{Z_{\parallel}}{n}\right) \cdot f(\phi)$$

Now we construct normalized Hamiltonian:

$$H(\delta,\phi) = \frac{1}{2}\zeta^2 + (1-\cos\phi) + \kappa \cdot f(\phi)$$

$$\kappa = \frac{Ze \cdot h^2 \omega_0 N_0}{V_{RF}} \cdot \left(\frac{Z_{\parallel}}{n}\right) \text{ determines space charge}$$

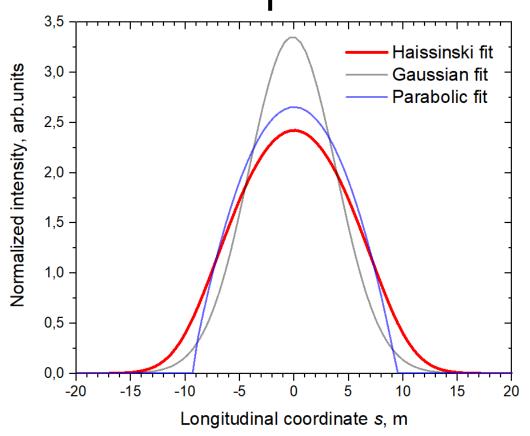
$$\zeta = \frac{h\omega_0 \eta \delta}{\omega_S} = \frac{h\eta \delta}{v_S} \text{ is conjugate momentum}$$



Z=26, e is elementary charge,  $\omega_0=2\pi f_0$  is circulation frequency,  $N_0$  is total number of particles,  $V_{RF}$  is RF voltage amplitude, h=1 is RF harmonic,  $\eta=0.94$  is slip factor,  $\omega_s$  is synchrotron oscillations frequency,  $\frac{Z_{\parallel}}{n}$  is effective impedance

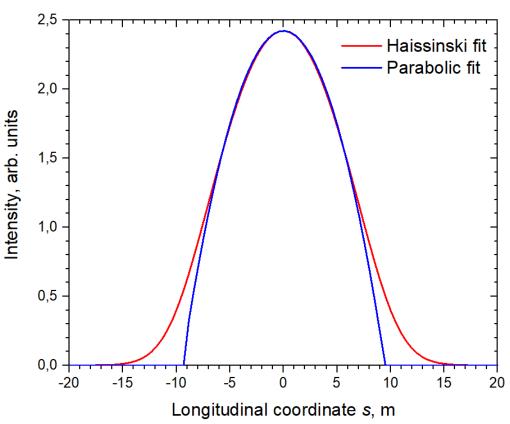
Space charge results in potential well flattening

#### Equilibrium bunch distributions



#### Haissinski fit:

$$\sigma_{\delta}=5.6\cdot 10^{-5};$$
  $Z_{\parallel}/n=4560~\Omega$  Gaussian fit:  $\sigma_{\delta}=5.6\cdot 10^{-5};$   $Z_{\parallel}/n=0;$  Parabolic fit:  $\sigma_{\delta}=0;$   $Z_{\parallel}/n=4560~\Omega;$ 



<u>Distorted potential well</u> → bunch shape changes.

Zero space charge (not distorted well): Gaussian,  $\sigma_{\delta} = 2\pi \frac{\sigma_l}{c_a} \sqrt{\frac{zeV_{RF}h}{2\pi\beta^2 E_s \cdot \eta}}$  [5] ( $\sigma_l$  is bunch length, m) – grey line;

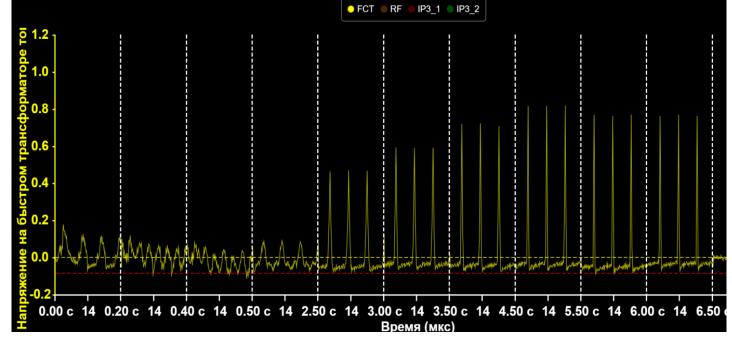
Cooling ON: distribution tends to parabolic with Gaussian tails,  $\sigma_{\delta} \downarrow$ , impedance  $Z_{\parallel}/n \uparrow$  - red line;

Limiting case:  $\underline{\sigma_{\delta}} = 0$ ,  $Z_{\parallel}/n \neq 0$  - pure parabola - blue line.

## Longitudinal beam distribution diagnostics



Beam fast current transformer (FCT) manufactured by Bergoz [6]



FCT signal, e-cooling is on

 $R = C_a/2\pi$ 

Distribution over time → over longitudinal coordinate → over phase

$$f(t) \to f(s) = \frac{\omega_0 f(t)}{R} \to f(\phi) = \omega_0 f(t)$$

Approximate FCT data with Haissinski equation:

vary  $\left(\frac{Z_{\parallel}}{n}\right)$  and  $\sigma_{\delta}$  to get best fit. Goal: find  $\sigma_{\delta}$  of beam.

#### Accelerator parameters

NICA accelerator complex Booster synchrotron Parameters in 29.06.2025

- Circumference  $C_a = 210.96$  m;
- Circulating ions  $^{124}$ Xe $^{26+}$  (Target ion charge number Z=26);
- Injection energy 3.2 MeV/nucleon  $\rightarrow \beta = 0.0826; \gamma = 1.003;$
- Beam circulation frequency at injection energy  $\frac{\omega_0}{2\pi}=117550$  Hz;
- RF amplitude  $V_{RF} = 40$  V, harmonic h = 1;
- Slip factor  $|\eta| = 0.94$ ;
- Measured synchrotron oscillations frequency  $\frac{\omega_s}{2\pi}=51$  Hz is the same as calculated for given  $V_{RF}$ ;
- Number of particles in bunch is calculated via integration of FCT signal with gain coefficient;
- Electron cooling was turned on with electron beam current  $I_e=15~\mathrm{mA}$ ;
- Electron gun cathode voltage  $U_c = 1773 \text{ V}$ ;
- Longitudinal cooling time is  $\tau_{cool} \approx 70$  ms.

#### Haissinski equation construction algorithm

Haissinski equation is transcendent.

$$f_0$$
 from normalization: 
$$\int_{-\pi}^{\pi} f(\phi) d\phi = 1. \qquad f(\phi) = f_0 \cdot \exp\left(-\frac{(1-\cos\phi) + \frac{Ze \cdot h^2 \omega_0 N_0}{V_{RF}} \cdot \left(\frac{Z_{\parallel}}{n}\right) \cdot f(\phi)}{(\sigma_{\delta} h |\eta| / \nu_s)^2}\right) \qquad \phi = \frac{2\pi h s}{C_a};$$

$$v_s = \frac{\omega_s}{\omega_o};$$

Use method of iterations. Initial guess is Gaussian with  $\sigma_{\delta}$  from bunch length:

$$f^{0}(\phi) = f_{0} \cdot \exp\left(-\frac{(1-\cos\phi)}{(\sigma_{\delta}h|\eta|/\nu_{s})^{2}}\right)$$

Each iteration adds to function the following exponential term:

$$f^{a}(\phi) = \exp\left(-\frac{(1-\cos\phi) + \frac{Ze \cdot h^{2}\omega_{0}N_{0}}{V_{RF}} \cdot \left(\frac{Z_{\parallel}}{n}\right) \cdot f(\phi)}{(\sigma_{\delta}h|\eta|/\nu_{s})^{2}}\right)$$

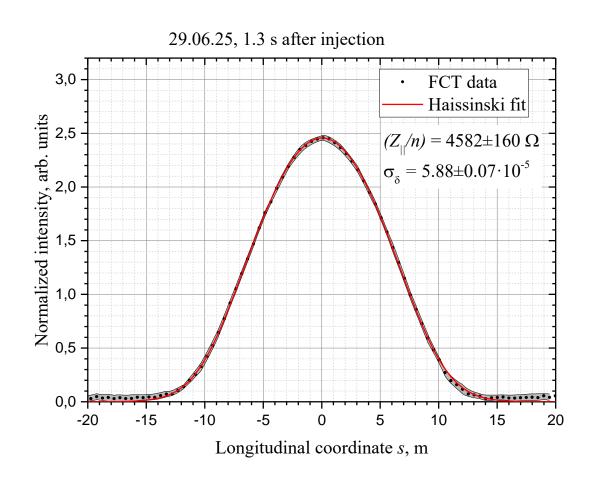
so after i-th iteration the value of j-th distribution point is:

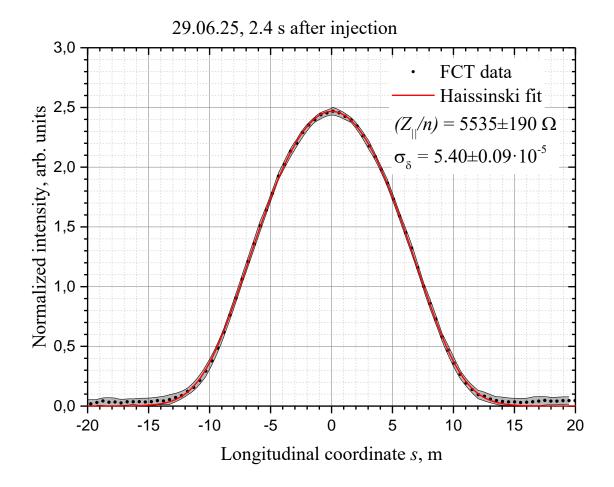
$$f_j^i(\phi) = f_j^{i-1}(\phi) \cdot (1 - \alpha) + \alpha \cdot f_j^a(\phi), 0 < \alpha < 1$$

Converges after 50-100 iterations

Then we run over  $\left[\left(\frac{Z_{\parallel}}{n}\right); \sigma_{\delta}\right]$  grid to find distribution that fits data with least squares algorithm

### Approximation results

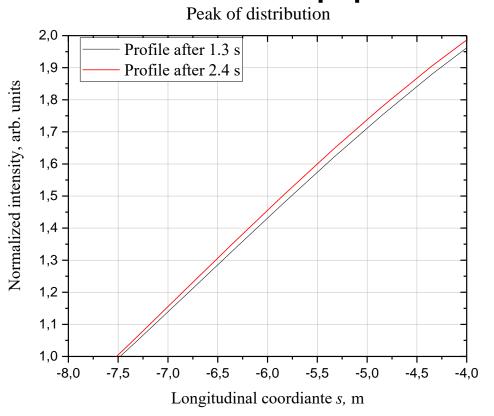


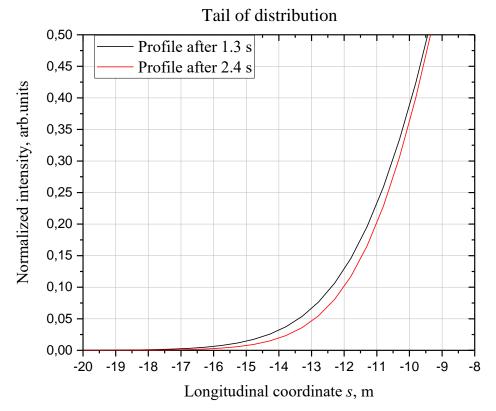


Comparison of two longitudinal beam profiles (avgd. 20 turns) with cooling ON, difference between shots is 1.1 s.

- $\sigma_{\delta}$  decreases;
- Effective impedance grows due to transverse beam size shrinkage.

### Approximation results





Active cooling → increasing space charge force and impedance: Broadening near peak → parabolic-like distribution; Tails are shrinking as momentum spread decreases.

#### Summary

• For beams with negligible space charge (Gaussian):  $\sigma_{\delta}$  can be found from bunch

length 
$$\sigma_l$$
 as  $\sigma_\delta = 2\pi \frac{\sigma_l}{c_a} \sqrt{\frac{ZeV_{RF}h}{2\pi\beta^2 E_S \cdot \eta}}$ 

- One cannot use bunch length to find  $\sigma_{\delta}$  for <u>space-charge dominated beam</u> due to <u>lengthening</u>;
- $\sigma_{\delta}$  measurement for space charge dominated beams with <u>Haissinski fit</u>;
- Effective impedance can be found as well;

#### Future plans:

- Analysis of <u>⊥ beam size</u> evolution with data from <u>profile monitor</u>;
- Analysis of <u>effective impedance</u> on ⊥ beam size;
- Restoration of longitudinal phase space density;
- Haissinski fit with <u>barrier-like RF</u> voltage.

# Momentum spread measurement method for the space charge-dominated ion beams

29th International Scientific Conference of Young Scientists and Specialists (AYSS-2025)

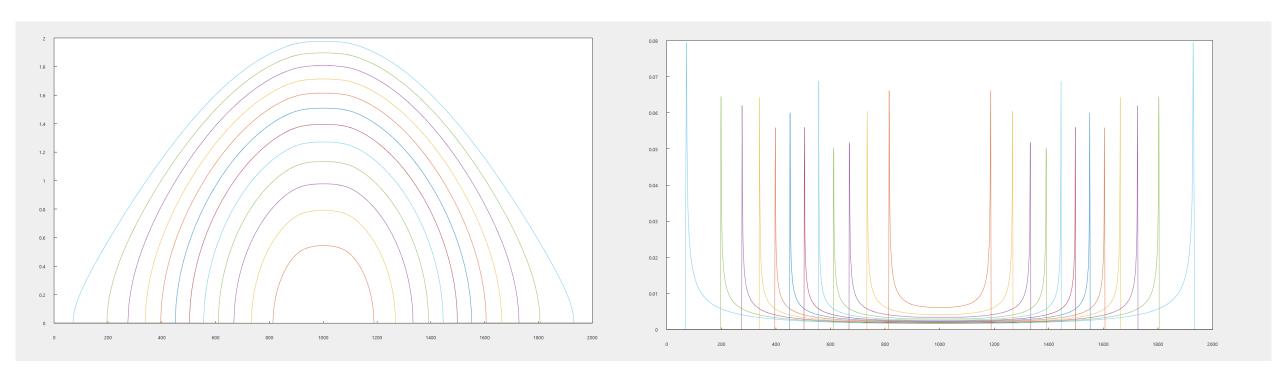
D.K. Chumakov<sup>1,2</sup>, V.A. Lebedev<sup>2</sup>, A.S. Sergeev<sup>2</sup>, Yu. V. Prokofichev<sup>2</sup>, V.S. Shpakov<sup>2</sup>

<sup>1</sup> National Research Tomsk Polytechnic University

<sup>2</sup> Joint Institute for Nuclear Research

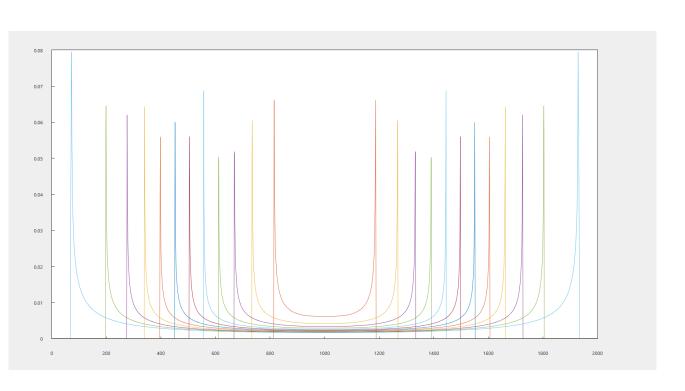
<u>chumadan@jinr.ru</u>

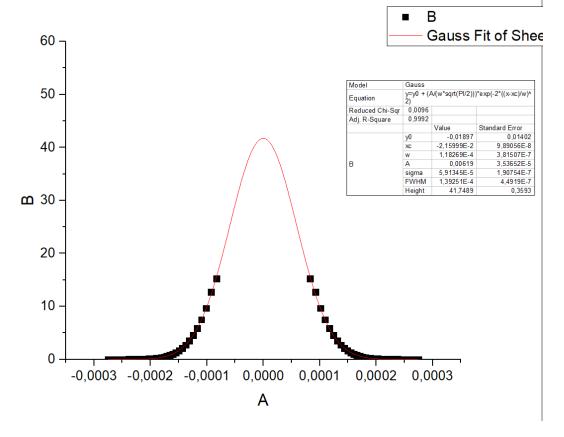
## Potential well flattening due to SC



Left – Separatrix with phase space ellipses for space charge + RF Hamiltonian; Right – Functions of difference between phase space ellipses; these ones are used to restore distribution

#### Momentum spread distribution restoration





Phase space ellipses were used to get weights restoring phase space density distribution; Momentum spread distribution is a projection of phase space density distribution

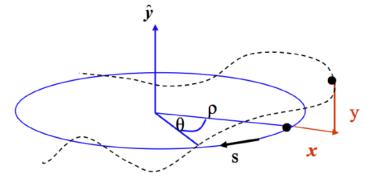
## Fokker-Planck equation

#### Fokker-Planck equation

$$\frac{\partial f}{\partial t} = \sum_{m,n} \frac{\partial}{\partial v_m} \left( -f \frac{F_m}{M} + \frac{\partial (f D_{mn})}{\partial v_n} \right); (m, n \to \{x, y, s\})$$

Cooling force 
$$F = \frac{M_i \langle \Delta v \rangle}{\Delta t}$$
;

Diffusion power 
$$D_{mn} = \frac{\langle \Delta v_m \Delta v_n \rangle}{\Delta t}$$



Haissinski equation: 
$$f(s) = f_0 \cdot \exp\left(-\frac{U(s)}{kT_{\parallel}}\right);$$
 
$$U(s) = ZeV_{RF}\left(1 - \cos\frac{hs}{R}\right) + (Zeh)^2\omega_0\gamma^2N_0 \cdot \left(\frac{Z_{\parallel}}{n}\right) \cdot f(s);$$
 
$$f(s) = f_0 \cdot \exp\left(-\frac{\left(1 - \cos\frac{hs}{R}\right) + \frac{Ze \cdot h^2\omega_0\gamma^2N_0}{V_{RF}} \cdot \left(\frac{Z_{\parallel}}{n}\right) \cdot f(s)}{(\sigma_s h |n|/\alpha_s)^2}\right)$$

#### Measured beam correction

Digital filter compensating BTF was applied

