"Experiments with RIBs at ACCULINNA-1/ACCULINNA-2 fragment separators"

A.S. Fomichev

Study of the beta-delayed alpha branch of ¹¹Be proposed by the Warsaw University team was done in February 2018 at the ACCULINNA-1 setup. The method based on the RIB implantation into an optical time-projection chamber was successfully applied. Data collected for the case of ¹¹Be ($T_{1/2} = 13.76$ s) and for other isotopes, ⁸Li ($T_{1/2} = 0.84$ s), ⁸B ($T_{1/2} = 0.77$ s) and ⁹C ($T_{1/2} = 0.126$ s), were used for the crosscheck measurements showing that the method works well even in the case of long-lived nuclei.

In spring, the first experiments were carried out with the RIBs obtained from the new fragment separator ACCULINNA-2 at the U-400M cyclotron. The fragmentation reaction ¹⁵N (49.7 AMeV) + Be (2 mm) was used for the production of intensive ⁶He and ⁹Li RIBs. The RIBs with intensity ~10⁵ pps, energy ~25 AMeV and purity ~92% were focused on the CD₂ physical target in a spot with a ~17-mm diameter (FWHM). The ⁶He + d experiment, aimed at the study of elastic and inelastic scattering in a wide angular range ($\theta_{cm} = 25 \div 130$ deg.) was done with a good statistics during a two-week exposition. Preliminary results of these measurements will be presented. Parameters of optical potential needed for the study of ⁶He interaction with deuterium nuclei were in the sphere of interests.

Another task with ⁶He projectile, the (d,³He) reaction chosen to populate the ⁵H ground and exited states, was the subject of a one-week run. Data collected are necessary to check an approach assuming the detection of coincidences between the reaction products moving forward, at lab angles $\theta < 20$ deg. These are the low-energy ³He (E=8.5 ÷ 11.5 MeV) and fast tritons (E= 117 ÷ 121 MeV). The key stone of the ³He detection was a Δ E-E telescope consisting of two Si detectors – a 20-micron SSD and a 1000-micron DSSD. Based on the preliminary data analysis we conclude that the telescope separates well the ³He events in presence of ⁴He background. This method will be applies in a flagship experiment dedicated to the search for the enigmatic nucleus ⁷H produced in the ⁸He + d \rightarrow ³He + ⁷H reaction. The study of the ⁷H and its *4n*-decay in the reaction ⁸He(d,³He)⁷H is proposed for the fall 2018.

Finally, a run carried out this spring was focused on the study of low-lying states of ¹⁰Li populated in the reaction ${}^{9}\text{Li}(d,p){}^{10}\text{Li} \rightarrow n{+}^{9}\text{Li}$. The principal issue of this experiment was the registration of protons, emitted backward in lab system, in coincidence with neutrons moving in forward direction. The data obtained during a half-week exposition are analyzed for the estimation of experimental efficiency, energy resolution and background conditions for such kind measurements at ACCULINNA-2.