
The Problem of False Track Filtering to Improve the Efficiency of
Event Reconstruction in the SPD NICA Experiment

Amirkhanova1a, G.A., Mansurova1 M.E., Kunelbayev1 M.M.,
Ososkov 2 G.A., Shomanov 1 A.S.

1al-Farabi Kazakh National University , 71 al-Farabi Ave., Almaty, Republic of Kazakhstan, 050040.
2Joint Institute for Nuclear Research, Joliot-Courie str. 6, Dubna, Moscow region, 141980 Russia.

a) Corresponding author: gulshat.aa@gmail.com
b)gososkov@gmail.com, c)adai.shomanov@nu.edu.kz

Abstract. Reconstruction of trajectories of charged particles (tracking) is one of the actual
problems in experiments in high energy physics. In the tracking program developed by a team
of authors of al-Farabi Kazakh National University and JINR to process data registered by
detectors located in the magnetic field of the experimental setup SPD planned in the complex of
JINR NICA collider an algorithm is proposed for sifting out false tracks that arise during neural
network tracking. This algorithm is based on a threshold criterion that calculates the quality of
the helical line fit to the samples that make up a candidate track recognized by the neural
network. In this paper, which continues this research, a method is proposed to significantly
speed up the algorithm to weed out false tracks by paralleling it. The results of a comparative
analysis of the computational speedup when paralleling them with conditions of a various noise
background and preserving the efficiency of track reconstruction are shown.

INTRODUCTION

The SPD NICA experiment is a high-energy physics experiment that seeks to
investigate the characteristics of dense matter in extreme conditions. To accomplish this, the
SPD collaboration proposes the installation of a universal detector in the second interaction
point of the NICA collider, which will allow for the study of the spin structure of the proton and
deuteron using polarized beams. The experiment will operate at collision energies of up to 27
GeV and a luminosity of up to 1032 cm −2 s −1[1] The results of the SPD experiment are expected
to contribute significantly to our overall understanding of the gluon content of nucleons and to
complement other similar studies at RHIC, EIC at BNL, and at the fixed-target facilities at LHC
at CERN. Conducting simultaneous measurements using different processes within the same
experimental setup is vital for minimizing possible systematic errors. Additionally, the
experiment has the potential to investigate polarized and unpolarized physics during the first
stage of NICA's operation, with reduced luminosity and collision energy of the proton and ion
beams.

mailto:gulshat.aa@gmail.com
mailto:adai.shomanov@nu.edu.kz
mailto:gososkov@gmail.com

Figure 1. General layout of the SPD setup [1]

As indicated in [1] and shown in Figure 1 the tracking part of the SPD setup includes the
silicon vertex detector (SVD) and straw tube-based tracking (ST) system, which together
consist of 53 measuring stations.

Our focus is on the reconstruction of track measurements made in the SVD and ST
systems. Unfortunately, both these detector systems have one significant disadvantage,
caused by the data acquisition hardware itself. For instance, the straw-tubes of every station
are arranged in parallel in two layers so that one of the coordinates of the passing track is read
by the tubes of one layer, and the other one by the other layer. When the number of passing
tracks is more than one, this inevitably leads to the appearance of a large number of false
readings - fake hits in addition to the real ones.

Recognition of the trajectories of particles involved in collisions, for all high energy
experiments, is the main stage in the reconstruction of events, necessary to assess the physical
parameters of these particles and to interpret the processes under study.

Therefore, many articles are devoted to the development of track recognition algorithms
and programs. Traditionally, algorithms based on the Kalman filter (KF) have been
successfully used for tracking. However, in recent years, due to the increase in both the
luminosity of particle beams in HEP experiments and the multiplicity of events, it has become
clear that the iterative nature of KF and its poor scalability require new approaches to tracking.
The most promising was the application of tracking algorithms based on deep neural networks.

One may note the articles [2-9] devoted to the use of deep learning methods in particle
physics, in particular for the problem of tracking objects or particles in high-energy
experiments. Gligorov [2] combines deep learning and Kalman filtering to develop a track-
finding algorithm that takes advantage of the strengths of both methods. Binua et al. [3] present
DeepTrack, a deep learning approach to tracking at LHC with high luminosity that involves
using convolutional neural networks to analyze data and predict particle trajectories. Schlomi
[4] applies deep learning to tracking problems in particle physics and explores the use of
recurrent neural networks for this task. Uchida et al. [5] propose a deep neural network
approach for tracking in the ILD experiment, which involves using a convolutional neural
network and a recurrent neural network in combination. Antonell et al. [6] describe a deep
learning approach for CMS tracker updates that involves the use of convolutional neural
networks and long-term short-term memory networks. Al-Turki [7] explores the use of deep

learning for track reconstruction in high-energy physics and discusses the potential benefits of
using these techniques in combination with existing ones. Divol et al. [8] present DeepTrack, a
deep learning approach to tracking at high luminosity LHCs that involves the use of
convolutional neural networks and recurrent neural networks within a particle flow framework.
Wenzel et al. [9] also explore the use of deep neural networks for particle tracking in high-
energy physics experiments and present an approach involving the use of a convolutional
neural network and a graph neural network. These articles demonstrate the growing interest in
using deep learning techniques to improve particle tracking in high-energy physics experiments
and suggest that these techniques can significantly improve the accuracy and efficiency of
particle identification and reconstruction.

Let us also note two more articles that have influenced research on the development of
deep-tracking algorithms, conducted at JINR in collaboration with al-Farabi Kazakh National
University. The paper [10] presents deep learning methods for the reconstruction of particle
tracks in high-energy physics experiments, which is a critical task for determining the type and
energy of obtained particles. The proposed methods are aimed at improving the existing
methods of track reconstruction by using the capabilities of neural networks. The authors
presented a type of neural network, called a "directed message network" (DMPN), which is
designed to work with graph structures such as those commonly used to represent particle
detector data. DMPN is capable of multi-step message passing and aggregation operations,
which allows it to gather information from neighboring graph nodes and incorporate it into its
predictions. This article discussed deep learning techniques that can significantly improve the
performance of particle track reconstruction in high-energy physics experiments.

The next article written by Vlimant et al [11] provides an overview of HTrkX, a new
software package for track reconstruction that uses deep learning techniques to process data
from high-energy physics experiments. The authors describe the problem of track
reconstruction, which involves determining the paths of particles produced in high-energy
collisions from detector data. This task is computationally demanding, requires processing
large amounts of data, and is complicated by the fact that different detectors produce data in
different formats. To solve these problems, the authors propose to use deep learning techniques.
They describe a new neural network architecture called the "fully convolutional network"
(FCN), which is able to process data from multiple detectors and produce a single output, which
is a reconstructed particle track. The authors also discuss practical aspects of implementing
FCN in a real experiment, such as the need to process data from multiple detectors and the
importance of optimizing the network to improve performance.

It should be emphasized, however, that the above articles did not pay special attention to
the problem of the extreme difficulty of the tracking process due to aforementioned design
features of such detectors as the silicon vertex detector and straw tube-based tracking system,
which are parts of the SPD setup. The huge background of fake measurements generated in
such detectors not only seriously complicates the tracking procedure itself, but also leads to a
large number of falsely recognized tracks, as it was clearly demonstrated in [12] for data from
similar detectors of BM@N experiment. In [13] a solution to the problem of screening out false
tracks, appearing after the application of TrackNet Neural Network model for deep tracking
data of the BM@N experiment with a fixed target, is proposed by applying a graph neural
network (GNN) to all track-candidates, both true and false at once. The success of such two
stages approach stimulated the idea of its application to SPD collider experiment data
processing, which was performed in [13] with promising results.

There is, however, another alternative method of sifting out false tracks by applying a
statistical criterion that takes into account the proximity of the sought track to some smooth
spatial curve. This approach was explored in a joint study [14] by a team of authors of al-Farabi
Kazakh National University and JINR, where the algorithms for sifting false tracks have been
proposed based on the method of approximating the recognized points of the particle trajectory
by a spatial helix line and calculating a metric describing the quality of the approximation.
Exceeding some threshold by this metric means a poor match of the points included in the

candidate track to the particle's trajectory, which with high probability means that this
candidate track belongs to the false tracks.

Since the trajectories of moving particles in the homogeneous magnetic subfield of the
detector form spatial helical lines in the first stage of our study we used helical approximation,
and the mean square error of approximation was taken as the quality metric. However, further
another approximation of the found candidate tracks was also applied using a third-degree
spatial polynomial, which allowed us to consider the case of an inhomogeneous magnetic field.

When solving the problem of particle reconstruction, we faced the problem of computing
speed limitations related to the computational power of the computer on which the calculations
were carried out. At the same time, on the current stage of the SPD setup design, when the exact
characteristics of track detectors are not yet fully known, the development of event
reconstruction algorithms in the future SPD experiment can be carried out using a dataset of
simulated events in whose model the basic physical information about the nature of spin
interactions and a simplified uniform spatial distribution of fake hits is embedded. The use of
such simplified data model makes it possible to assess the fundamental possibility of applying
the neural network approach to SPD, to evaluate the dependence of the speed of reconstruction
algorithms and the value of their efficiency metrics.

Thus, the main goal of this study is devoted to developing the algorithms proposed in
[15] for both approximations and accounting for data contamination by fake measurements, and
also to overcoming the aforementioned limitations by applying paralleling techniques.
The study will contribute to this area by providing a new and effective solution to this problem.

THE SOLUTION OF A NON-LINEAR PROBLEM FOR THE ESTIMATION
OF HELICAL LINE PARAMETERS

The coordinate system of the SPD tracking detectors is arranged so that the direction of
the beam of accelerated particles coincides with the direction of the Oz axis and the direction of
the magnetic field of the SPD. The coordinates of event vertices, i.e., particle collision points,
are located along the Oz axis near the origin of the coordinates. Assuming homogeneity of the
magnetic field of the detector, the particle trajectories must be close to a helical line with its axis
directed along the Oz axis according to the magnetic field direction. The projection of the
helical line onto the xOy plane forms a circle of radius R in the xOy plane, centered at (x 0,y0),
while the helical line itself extends along the Oz axis with an inclination to the Oxy plane
defined by an angle with tangent λ. Because the circle touches the origin, we obtain y0

2 = R2-x0
2,

which reduces the number of parameters of the helical line to three.
Thus, we get the helical equations in the form of

 (x-x0)2+(y-y0)2 = R 2 (1)

 y0
2 = R2-x0

2 (2)
z= λ arctg((y-y0)/(x-x0)) (3)

To estimate the helical line parameters, we used a set of model data of particle trajectory
measurements in the magnetic field of SPD detector, simulated according to the pixel detector
scheme without considering background measurements. For each track with n measured points
on it (xi,yi,zi); i=1,2,...n the values of the helical line parameters R, (x0,y0), and λ had to be
estimated, which is a highly non-linear problem. Therefore, at first a variant of the maximum
likelihood method with partial adoption of the approach from [15] by one of the authors was
applied for the estimation of the parameters of the circle R, (x0,y0) in the xOy plane with the
normalization of the minimizing functional of the form

 F (R , x0 , y0)=∑
i−1

n

❑((xi−x0)
2+(y i− y0)

2−R2)2 (4)

by the approximated gradient of the circle R2. By dividing (4) by R2 and equating derivatives of
R, (x0,y0) to zero, we obtain normal equations, which form a second-order nonlinear system:

F x0+Hb−x0 γ=P ,

 H x0+Gb− y0 γ=Q , (5)

2P x0+2Q y0+γ
2=T ,

where γ= R2-x0
2-y0

2

To simplify the notation let us denote by Gauss brackets expressions like

 ∑
i=1

n

❑xi
p y i

q=[x p yq] (6)

Then the coefficients in (5) are denoted as

F=1
n

[3 x2+ y2] ,

G=1
n

[x2+3 y2] ,

 H=2
n

[xy] , (7)

P=1
n

[x (x2+ y2)] ,

Q=1
n

[y (x2+ y2)] ,

T=1
n

[(x2+ y2)2] .

Excluding (x0,y0) in the system (5) and making the variable substitution γ=γ0 x ,

where γ0=
1
n

([x2]+ [y2]) , we obtain the a fourth-degree equation

 x4+A0 x
3+B0 x

2+C0 x+D0=0(8)

with the coefficients
A0=A /γ0 ,

B0=B /γ0
2 ,

C0=C /γ0
3 ,

D0=
D

γ0
4 ,

(9)

where the coefficients A,B,C,D from (9) are determined by formulae (10):

A=−F−G , (10)

B=FG−T−H 2,

C=T (F+G)−2 (P2+Q2) ,

D=T (H 2−FG)+2 (P2G+Q2F)−4 PQH .

As it is shown in [15], when solving the equation (8) by Newton's method with zero
initial value, we get just one of four roots that we need. Newton's method takes only 2-5
iterations to achieve an accuracy of the order of 10-3.

 Calculating γ=γ0 x we obtain x0, y0 from (5) and find R=√x02+ y0
2+γ

Then we can determine the standard deviation of the fitted circle

σ̂2= 1
n−3∑i=1

n

(√ (xi−x0)2+ (y i− y0)2−R)2 . (11)

To calculate the slope λ of the helical line to the Oxy plane we used linear equation (3),
the maximum likelihood method for which gives an estimate

λ=
∑
i=1

n

zi (φi−φ0)

∑
i=1

n

(φi−φ0)
2

 (12)

where φi=arctg(y i-y0)/(xi−x0), and φ0=0.
The total root-mean-square (rms) error of the fitted helical line is calculated as follows

χ2= 1
n−3∑i=1

n

((xi−x0)2+(y i−√R2−x0
2)2−R2)+((zi−λ φi))

2 (13)

We are going to use this rms range to create a criterion for evaluating the quality of the
tracking procedure.

DATA SET DESCRIPTION

The iterative method obtained in the previous section made it possible to estimate the
helical line parameters for the model events of the SPD experiment.

For the experiments, some statistical parameters were determined for the readout data:
- number of events: 1000
- numbering of events: from 1 to 1000
- number of tracks in each event: from 5 to 61
The tracks in the events are as follows (Figures 1-3)

Figure 1. normal track (track 10) Figure 2. track with discontinuities
(track 21)

Figure 3. track repeatedly twisted
(track 26)

There are no fake hits in these figures.
However, for more realistic simulations it is necessary to add fake hits to the data for

each detector station. Since at the stage of the SPD setup design the information about the exact
distribution of the fake hits is not yet known, it was proposed to distribute them uniformly
corresponding to the position of each station. Figure 4 shows that the addition of only 10 fake
hits causes a noticeable deviation in the results of helical track fitting.

To compare the effect of the level of noise on the value of our chosen criterion, we used
further three levels of noise for the model data of each station: 0, 100 and 1000 fake hits.

(a) (b)
Figure 4. track with fake hits (a) – a sample of fitted trajectory with no noise, (b) – the

same track sample fitted with 10 additional noisy hits.

THE DATA PROCESSING STRATEGY

The data processing strategy adopted in [15] to select the most optimal χ2 value
consisted in a preliminary clustering of all the obtained candidate tracks by the proximity of
their corresponding χ2 values and choosing the most populated cluster to estimate further the
χ2 only for tracks from this cluster as the most significant.

Three stages of data processing were used to extend this strategy to three levels of data
contaminated by fake measurements.

At the first stage without contaminations described in [15] all tracks in dataset were
clustered using χ2 ,as a measure of track proximity. X-means clustering [16] was applied to
these data The clustering was conducted in 2 phases. In the first phase initial clustering centers
have been obtained and computed according to KMeans ++ algorithm. These initial centers
provide a close estimate to the optimal centers due to probabilistic approach that stochastically
determines the closeness criterion and makes clusters to be far apart from each other. The
remaining clustering approach relies on X-Means algorithm that refines clustering decisions by
computing Bayesian Information Criterion in each step of the algorithm. In our study the goal
was to achieve a stable approach to determine a false track, i.e. tracks that do not correspond to
a correct particle trajectory. The results of the first stage are shown in Table 1.

Cluster id Mean Std Number of elements

0 4,5178 0,3570 121

1 0,0006 0,0016 16839

2 0,0225 0,0080 1091

3 0,0585 0,0131 277

4 0,1210 0,0233 419

5 0,2260 0,0378 277

6 0.3811 0,5841 259

7 0,6182 0,0807 211

8 0,9419 0,1005 182

9 1,3246 0,1326 161

10 1,8650 0,1732 144

Table 1 Clustering results for the first 10 clusters with the lowest chi-squared values

30 clusters were obtained, in each cluster the mean and standard deviation values of χ2 for
all cluster tracks were calculated. Table 1 shows the clustering results for the first 10 clusters
with the lowest chi-squared values. Analysis of the clusters by mean and number of elements
showed that 83% of the tracks fell into cluster #1, where the values of χ2 have the lowest mean
and standard deviation. The other clusters have noticeably higher errors in the helical fitting
procedure for the tracks. A visual comparison also showed the peculiarities of the tracks of each
cluster. A distinctive feature of the 'good' tracks in cluster number 1 is the absence of large
discontinuities and spirals. This noticeable dependence of track properties on the value of χ2,
which characterizes the quality of the helix line fitting to each track, led to the idea of using the
value of χ2 to screen out false tracks arising during their neural network reconstruction.

Then in the first stage we developed our parallelization to speed up the procedure of false
track rejection with the help of neural network tracking.

PARALLELISATION METHODS TO SIGNIFICANTLY SPEED UP THE
ALGORITHM TO WEED OUT FALSE TRACKS

Parallelization within an event. The ability to execute multiple cores simultaneously
from multiple event queues provides additional parallelism within an event. The order of kernel
execution within a sector must be maintained, but the different sectors are completely
independent [17]. Thus, it is possible to have multiple queues and simultaneously put all cores
for one sector in the same queue but distribute different sectors across multiple queues. This
works up to the number of queues equal to the number of sectors, although in principle it is
better to match the number of queues with hardware constraints [18].

Parallelize multiple events. A completely different and simpler approach is to execute
kernels for multiple events simultaneously. The HLT GPU framework allows to run
independent processing components, each of which performs track reconstruction on the same
GPU if there is enough GPU memory for all of them [19]. This approach can also load the GPU
well but multiplies the memory requirement by the number of simultaneous queues.

Figure 5. Schematic diagram of the parallel algorithm 1.

In our study, for greater generality, two approaches were used to approximate the found
candidate tracks. In the first approach, a spatial helix was fitted, in the second - a spatial
polynomial of the third degree. In the algorithm 1 proposed for computing optimal helix-loop
parameters in parallel, we used running parallel threads, where each thread performs a fitting
procedure for events assigned to the threads according to the round-robin enumeration and
circular loop ordering method. A schematic of the parallel algorithm 1 is shown in Figure 5.

The table of all tracks contains the coordinates of the top of the event x, y, z, the identity
number of the event N, the station number s, the detector number d, and the track number T
within the event. Due to the large number of tracks formed by different convents, the idea of
improving the performance of the process of determining the optimum helical parameters for
each of the tracks arises. Thus, in our implementation, we propose a partitioning algorithm
based on computation using multi-threaded computation. The partitioning algorithm is based
on the Round-Robin approach based on the idea of sequential execution of tasks. If we have k
threads, tasks are distributed in such a way that the first thread will compute the first track in the
given table, the second thread will compute the second element, and so on, until we reach the k-
th element (k-th thread is used to compute), after which k+1-th element will be processed by the
first thread again, and so on, until all the elements of the table are processed.

The algorithm 1 performance is shown in Figure 6.

2 4 8 16 32 64
0

20

40

60

80

100

120

140

время

number of threads

Ti
m

e,
 se

c

Figure 6. Running time of the parallel algorithm 1 as a function of the number of threads

Parallel Algorithm 2

In reality, due to inhomogeneity of the magnetic field of the SPD setup and the influence
of various factors distorting the particle trajectory, such as Coulomb scattering, etc., the helical
line in space ceases to adequately describe the trajectory. Besides, the iterative nonlinear fitting
method described above proves to be slower than the linear approach and more complicated to
parallelise. Therefore another method using a third degree spatial polynomial was applied.

Assuming we have a set of n knot points P0 , P1 , ... , Pn−1, where Pi=(xi , y i , zi)
T ∈R3, the

parametrization is made, which associates knot points with parameters ui. Based on that
parametrization, we can find an approximation curve, f (u)=(f x(u) , f y(u) , f z(u)). Each of the
approximation curves is represented by a polynomial function of certain degree k .

f x(u)=∑
r=0

k

❑axr
∗ur

f y(u)=∑
r=0

k

❑a yr
∗ur

f z(u)=∑
r=0

k

❑azr
∗ur

The idea is to fit the curve f (u) such that distance to knot points from the curve is
minimized given the parametrization u. To perform this step, we rely on the method of the least
squares, where the sum of squares of residuals of the curve points and their corresponding knot
points are minimized.

To approximate iteratively parameters, it is required to make an initial parameterization,
which is based on centripetal parameterization approach (see formula below):

u0=0 ,ui=ui−1+
|Pi−Pi−1|

1/2

∑
j=1

n−1

❑|P j−P j−1|
1/2

The input parameters for the algorithm are the same as for algorithm 1 and contain the
coordinates of the event node x, y, z, event identification number N, station number s, detector
number d, track number T within the event.

The algorithm is based on fitting spatial polynomials of the third degree to track coordinates. To
find new estimates of parameters at each iteration the Golden Ratio search method is used for
locally minimizing the approximation error computed as described above from the residual
values of knot points and the corresponding curve. Due to the more efficient computational
cycle, this algorithm is characterized by a fast computation procedure and is therefore less
computationally demanding.

Since the golden search method demands a certain number of iterations till convergence, we
need to determine the optimal number of iterations for convergence to the required calculation
accuracy. To this end, we have applied convergence estimation methods according to the
formula:

n=
log ⁡(ε

|b−a|
)

log ⁡(R)

((14)

Using this formula we can estimate the number of iterations n that algorithm will take to find a
minimum on the given interval between endpoints ui−1 and ui+1 for each corresponding
dimension in the 3D plane for the estimated parameter value ui. Golden Ratio search is an
effective way of gradually reducing the interval for finding the minimum. The key is to ensure
that no matter how many points are estimated, the minimum is within the interval defined by the
two points adjacent to the point with the lowest estimated value.

Next, polynomials are constructed using standard quadratic error minimization techniques:

E=∑
j=1

k

|p (x j)− y j|
2

Comparison of performances for two algorithms

By comparing the two algorithms the main aspects of each method can be highlighted:

Number of

iterations

Computational complexity Memory
consumption

Algorithm 1 Small High High

Algorithm 2 Average Average Average

Thus, it can be noted that Algorithm 2 appears to be more optimal according to the basic
performance criteria given above.

Parallelisation is based on the multiprocessing library in the Python programming
language. As an implementation, an algorithm for splitting the array of events into threads was
used. The running time of the parallel algorithm depending on the number of threads is shown
in Figure 7.

Figure 7. Comparative running times of the two proposed parallel algorithms

The algorithm was tested on a multi-core compute node with the following
characteristics: Number of cores -32, Memory - 64 Gb, Processor type - AMD Ryzen, Disk
memory (SSD) -2 Tb.

This system supports up to 64 parallel threads, so in our experiment we have shown
computation time results for sequential code without parallelization, with 2 parallel threads, 4
parallel threads, 8 parallel threads, 16 parallel threads, 32 parallel threads and 64 parallel
threads.

In our experiment we used a track table consisting of 42102 tracks. Thus, the average
execution time of a subroutine to calculate the optimum helix parameters for one track from the
whole set is approximately 0.5*10-3 seconds.

As we can see from the results, the algorithm shows a good speed-up, with a six-fold
speed-up achieved. It is worth noting, however, that there is some deceleration of acceleration
due to the additional memory fill factor.

NEURAL NETWORK ALGORITHM FOR TRACK RECOGNITION AND ITS
PERFORMANCE RESULTS WITH FALSE TRACKS BEFORE AND AFTER

APPLYING THE TRACK REJECTION CRITERION

TrackNETv3 is a program that implements a deep recurrent neural network designed for
local tracking, where each track is recovered individually in sequence, station by station. A
detailed description of the model has been described in [20]. The quality of track recovery is
evaluated using the two most popular metrics: recall and precision. Recall is the proportion of
true tracks that have been fully recovered. Precision reflects the proportion of true tracks among
all tracks found by the model.

The neural network was trained on 50,000 model SPD events of simplified geometry.
Each sample event, apart from tracks (on average 5), contained false (noise) tracks. Their
number reached 60 on average.

The trained model is able to reconstruct 90% and more tracks. But at the same time, along
with real tracks, a neural network outputs false tracks, the number of which is much higher.
Thus, in the total number of tracks from our set, reconstructed with TrackNETv3, the share of
true tracks is only 2%.

In order to increase the share of true tracks in the total number of all reconstructed tracks,
we used a value of χ2 - as a criterion for elimination. A false track is far enough away from the
reconstructed helix, as opposed to a true track, that if the threshold for χ2 is chosen correctly,
only false tracks will be screened out among all reconstructed tracks.

The screening threshold was calculated under ideal conditions, on a sample containing
only true tracks, as the average value of χ2 plus three standard deviations, so that its value is
0.023. The distribution of χ2 for both true and false tracks is shown in Figure 8.

Figure. 8. Distribution of χ2 for true left and false right tracks

The dependence of the recall and precision metrics on the value of the false track
rejection criterion is shown in Figure 9

Figure 9: Dependence of the recall and precision metrics on the value of the screening
criterion.

In this way, the track sifting experiment increased the accuracy metric from 0.16 to 0.93. At the
same time, the recall metric did not fall below 0.93. All experiments using Ariadne library tools
[21]. Resource calculations using the heterogeneous computing platform HybriLIT (LIT,
JINR) [22].

FALSE TRACK REJECTION IN CASE OF CONTAMINATED DATA

Due to the bias in the original dataset, the model has some limitations in terms of potentially
poor reconstruction of true tracks in the presence of highly noisy data that contain a lot of false
hits. The actual data from experiments shows that on average the number of false hits in each
detector can reach n to n2, where n denotes the total number of tracks per event. Therefore, to
test the introduced criteria of track clustering based on Chi-squared measure, we propose to
model more realistic samples and introduce in the dataset with noisy hits corresponding to 2
different noise levels. The first noise level will contain 100 false hits per station, while higher
noise level will contain 1000 false hits.

Comparative clustering results are presented in Table 2.

0 noise level (0 false
hits)

1st noise level (100
false hits)

2nd noise level (1000
false hits)

Mean value of the
center cluster

0,0005 0,0011 0,0071

Standard deviation
value of the center
cluster

0,0012 0,0065 0,0142

Number of elements 16422 12319 10343

 Table 2. Center cluster chi-squared depending on (a) zero level of noise, (b) 100 false hits,
(c) 1000 false hits.

The model takes as input data about events in the form of pandas.DataFrame [23] with columns
x, y, z, event (event number), station (station number), track (track number if the hit belongs to
the track or -1 if it is a fake hit).

At the output, the algorithm receives candidate tracks found by the model, translates them into
hit index format, and compares the resulting candidate tracks with real tracks based on a
complete coincidence.

The Ariadne library was used to train and test the model.

The neural network training is based on a 3-step approach:

1) The data in the form of dataframe of coordinates (x,y,z) of hits, event, track and station
identifiers fed as an input to a neural network

2) The network generates candidate tracks based on TrackNetv2.1 model

3) After thresholding procedure based on clustering based on chi-squared of track
candidates after fitting a helix to a given trajectory, tracks are labeled as false or correct.

The results demonstrated in Table 3 show that the given approach can detect correct tracks with
high levels of recall and precision.

Recall is computed as a ratio of number of real tracks found by the model over number of real
tracks in the dataset.

Precision is computed as a ratio of the number of real tracks found by the model over the
number of all reconstructed tracks.

The testing was conducted on a DGX cluster with A100 GPU 40Gb, 1Tb memory and Dual 64-
Core AMD CPU with a dataset of 10000 events.

The training took approximately 25.6 hours to complete with 500 epochs for the training
consisting of 100 noisy points and a bit more on a dataset with 1000 fake points

Recall Precision Calculation time for
1 event (seconds)

With fake hits (100
points)

90.2 92.2 0.154

With fake hits (1000
points)

93.5 94.5 0.127

Without fake hits 89.6 91.5 0.211

Table 3. Recall and precision with fake hits (100 and 1000 hits per station) and without fake
hits.

CONCLUSION

The paper proposes a method of six-fold acceleration of the algorithm to sift out false tracks
by paralleling it under the condition of preserving the efficiency of track reconstruction, and
also demonstrates the possibility of using the rms error of helical and polynomial fitting to the
samples that make up the found candidate track as a criterion for sifting out false tracks. It is
shown that an appropriate choice of threshold for χ2 increases the fraction of true tracks among
the total number of recovered tracks by almost an order of magnitude for noiseless case,
although in presence of fake contaminations this speeding up is much lower. A further multiple
acceleration of the algorithm is envisaged by translating the program implementing it to C++.

ACKNOWLEDGMENTS

The work was supported by the Program No. BR10965191 (Complex Research in Nuclear
and Radiation Physics, High Energy Physics and Cosmology for the Development of
Competitive Technologies) of the Ministry of Education and Science of the Republic of
Kazakhstan.

REFERENCES

1. Conceptual design of the Spin Physics Detector, 31 Jan 2021.
https://arxiv.org/abs/2102.00442 .
2. V.V. Gligorov, "Combining deep learning and Kalman filtering for object tracking in particle
physics," arXiv preprint arXiv:2104.05797 (2021).
3. M. Binois et al, "DeepTrack: A deep learning approach to tracking at the high luminosity
LHC," JINST 14 (2019) no. 12, P12005.
4. J. Shlomi, "Applying Deep Learning to Tracking Problems in Particle Physics," arXiv
preprint arXiv:1812.08284 (2018).
5. S. Uchida et al, "Track finding with deep neural networks for the ILD experiment," Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 983 (2021) 164475.
6. P. Antonell et al, "Deep Learning for the CMS Tracker Upgrade," Journal of Instrumentation
14 (2019) no. 06, P06011.
7. M. Al-Turki, "Deep learning for track reconstruction in high energy physics," arXiv preprint
arXiv:2101.07825 (2021).
8. F. Divol et al, "DeepTrack: A deep learning approach to tracking at the high luminosity
LHC," Journal of Instrumentation 14 (2019) no. 12, P12005.
9. M. Wenzel et al, "Exploiting deep neural networks to perform particle tracking in high-
energy physics," Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 983 (2021) 164470.
10. S, Farrell et al, Novel deep learning methods for track reconstruction,
https://arxiv.org/pdf/1810.06111.pdf
11.https://indico.cern.ch/event/587955/contributions/2937540/attachments/
1685043/2710034/vlimant_CHEP-HtrkX_Jul18.pdf
12. A. Nikolskaia, P. Goncharov, G. Ososkov, E. Rezvaya, D. Rusov, E. Shchavelev D.
Baranov, TRACKNETV3 WITH OPTIMIZED INFERENCE FOR BM@N TRACKING,
https://ceur-ws.org/Vol-3041/332-337-paper-61.pdf
13. D. Rusov, A. Nikolskaia, P.V. Goncharov, E. Shchavelev and G. Ososkov, Deep neural
network applications for particle tracking at the BM@N and SPD experiments, 2022.
https://doi.org/10.22323/1.429.0005, https://pos.sissa.it/429/005/
14. G. A. Amirkhanova, Ye. K. Ashimov, P. V. Goncharov, A.S. Zhemchugov, M.Y.
Mansurova, G. A. Ososkov, Ye.P. Rezvaya, А. S. Shomanov. Application of the maximum
likelihood method to estimate the parameters of elementary particle trajectories in the
reconstruction problem of the internal detector of the SPD NICA experiment / Information
and telecommunication technologies and mathematical modelling of high-tech systems:
Proceedings of the All-Russian Conference with international participation, Moscow: RUDN,
2022, pp. 335-341.
15. N.I. Chernov, G.A. Ososkov, Effective algorithms for circle fitting, Computer Physics
Communications, 33(1984), pp. 329-333.
16. Pelleg, D., & Moore, A. W. (2000, June) X-means: Extending k-means with efficient
estimation of the number of clusters. In Icml (Vol. 1, pp. 727-734).
17. L. Canetti, M. Drewes, and M. Shaposhnikov, ‘‘Matter and antimatter in the universe,’’
New J. Phys., vol. 14, no. 9, Sep. 2012, Art. no. 095012.

https://arxiv.org/abs/2102.00442
https://pos.sissa.it/429/005/
https://ceur-ws.org/Vol-3041/332-337-paper-61.pdf%2013

18. LHCb Collaboration, ‘‘Framework TDR for the LHCb upgrade: Technical design
report,’’ CERN, Geneva, Switzerland, Tech. Rep. CERNLHCC-2012-007. LHCb-TDR-12,
Apr. 2012.
19. M. (2016, July 20). Parametric Curve Fitting with Iterative Parametrization. MeshLogic.
https://meshlogic.github.io/posts/jupyter/curve-fitting/parametric-curve-fitting/.
20. P. Goncharov, G. Ososkov, D. Baranov, S. Shengsen, and Z. Yao, CEUR Workshop
Proc. – Vol. 2507. – pp. 130-134 (2019).
21. Goncharov P. et al. Ariadne: PyTorch library for particle track reconstruction using deep
learning / P. Goncharov, E. Schavelev, A. Nikolskaya, and G. Ososkov //AIP Conference
Proceedings. AIP Publishing LLC, 2021. Vol. 2377, No. 1, pp. 040004.
22. Adam G. et al. IT-ecosystem of the HybriLIT heterogeneous platform for high-
performance computing and training of IT-specialists //English, in CEUR Workshop
Proceedings, V. Korenkov, A. Nechaevskiy, T. Zaikina, and E. Mazhitova, Eds. – 2018. –
Vol. 2267, pp. 638-644.
23. H. Stepanek, Thinking in Pandas. – 2020. https://doi.org/10.1007/978-1-4842-5839-2_1

https://meshlogic.github.io/posts/jupyter/curve-fitting/parametric-curve-fitting/

