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Abstract. Reconstruction of trajectories of charged particles (tracking) is one of the actual 
problems in experiments in high energy physics. In the tracking program developed by a team 
of authors of al-Farabi Kazakh National University and JINR to process data registered by 
detectors located in the magnetic field of the experimental setup SPD planned in the complex of 
JINR NICA collider an algorithm is proposed for sifting out false tracks that arise during neural 
network tracking. This algorithm is based on a threshold criterion that calculates the quality of 
the helical line fit to the samples that make up a candidate track recognized by the neural 
network. In this paper, which continues this research, a method is proposed to significantly 
speed up the algorithm to weed out false tracks by paralleling it. The results of a comparative  
analysis of the computational speedup when paralleling them with conditions of a various noise 
background and preserving the efficiency of track reconstruction are shown.

INTRODUCTION

The  SPD  NICA  experiment  is  a  high-energy  physics  experiment  that  seeks  to 
investigate the characteristics of dense matter in extreme conditions. To accomplish this, the 
SPD collaboration proposes the installation of a universal detector in the second interaction 
point of the NICA collider, which will allow for the study of the spin structure of the proton and 
deuteron using polarized beams. The experiment will operate at collision energies of up to 27 
GeV and a luminosity of up to 1032 cm −2 s −1[1] The results of the SPD experiment are expected 
to contribute significantly to our overall understanding of the gluon content of nucleons and to 
complement other similar studies at RHIC, EIC at BNL, and at the fixed-target facilities at LHC 
at CERN. Conducting simultaneous measurements using different processes within the same 
experimental  setup  is  vital  for  minimizing  possible  systematic  errors.  Additionally,  the 
experiment has the potential to investigate polarized and unpolarized physics during the first 
stage of NICA's operation, with reduced luminosity and collision energy of the proton and ion 
beams.
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Figure 1. General layout of the SPD setup [1]

As indicated in [1] and shown in Figure 1 the tracking part of the SPD setup includes the 
silicon vertex detector (SVD) and straw tube-based tracking (ST) system, which together 
consist of 53 measuring stations.

Our focus is on the reconstruction of track measurements made in the SVD and ST 
systems. Unfortunately, both these detector systems have one significant disadvantage, 
caused by the data acquisition hardware itself. For instance, the straw-tubes of every station 
are arranged in parallel in two layers so that one of the coordinates of the passing track is read 
by the tubes of one layer, and the other one by the other layer. When the number of passing 
tracks is more than one, this inevitably leads to the appearance of a large number of false 
readings - fake hits in addition to the real ones. 

Recognition of the trajectories of particles involved in collisions, for all high energy 
experiments, is the main stage in the reconstruction of events, necessary to assess the physical 
parameters of these particles and to interpret the processes under study.

Therefore, many articles are devoted to the development of track recognition algorithms 
and  programs.  Traditionally,  algorithms  based  on  the  Kalman  filter  (KF)  have  been 
successfully used for  tracking.  However,  in recent  years,  due to the increase in both the 
luminosity of particle beams in HEP experiments and the multiplicity of events, it has become 
clear that the iterative nature of KF and its poor scalability require new approaches to tracking. 
The most promising was the application of tracking algorithms based on deep neural networks.

One may note the articles [2-9] devoted to the use of deep learning methods in particle 
physics,  in  particular  for  the  problem  of  tracking  objects  or  particles  in  high-energy 
experiments.  Gligorov [2] combines deep learning and Kalman filtering to develop a track-
finding algorithm that takes advantage of the strengths of both methods. Binua et al. [3] present 
DeepTrack, a deep learning approach to tracking at LHC with high luminosity that involves 
using convolutional neural networks to analyze data and predict particle trajectories. Schlomi 
[4] applies deep learning to tracking problems in particle physics and explores the use of 
recurrent  neural  networks for  this  task.  Uchida et  al.  [5]  propose a  deep neural  network 
approach for tracking in the ILD experiment, which involves using a convolutional neural 
network and a recurrent neural network in combination. Antonell et al. [6] describe a deep 
learning approach for CMS tracker updates that  involves the use of convolutional neural 
networks and long-term short-term memory networks. Al-Turki [7] explores the use of deep 



learning for track reconstruction in high-energy physics and discusses the potential benefits of 
using these techniques in combination with existing ones. Divol et al. [8] present DeepTrack, a 
deep  learning  approach  to  tracking  at  high  luminosity  LHCs  that  involves  the  use  of 
convolutional neural networks and recurrent neural networks within a particle flow framework. 
Wenzel et al. [9] also explore the use of deep neural networks for particle tracking in high-
energy physics experiments and present an approach involving the use of a convolutional 
neural network and a graph neural network. These articles demonstrate the growing interest in 
using deep learning techniques to improve particle tracking in high-energy physics experiments 
and suggest that these techniques can significantly improve the accuracy and efficiency of 
particle identification and reconstruction. 

Let us also note two more articles that have influenced research on the development of 
deep-tracking algorithms, conducted at JINR in collaboration with al-Farabi Kazakh National 
University. The paper [10] presents deep learning methods for the reconstruction of particle 
tracks in high-energy physics experiments, which is a critical task for determining the type and 
energy of  obtained particles.  The proposed methods are  aimed at  improving the existing 
methods of track reconstruction by using the capabilities of neural networks. The authors 
presented a type of neural network, called a "directed message network" (DMPN), which is 
designed to work with graph structures such as those commonly used to represent particle 
detector data. DMPN is capable of multi-step message passing and aggregation operations, 
which allows it to gather information from neighboring graph nodes and incorporate it into its 
predictions.  This article discussed deep learning techniques that can significantly improve the 
performance of particle track reconstruction in high-energy physics experiments.

The next article written by Vlimant et al [11] provides an overview of HTrkX, a new 
software package for track reconstruction that uses deep learning techniques to process data 
from  high-energy  physics  experiments.  The  authors  describe  the  problem  of  track 
reconstruction, which involves determining the paths of particles produced in high-energy 
collisions from detector data. This task is computationally demanding, requires processing 
large amounts of data, and is complicated by the fact that different detectors produce data in 
different formats. To solve these problems, the authors propose to use deep learning techniques. 
They describe a new neural network architecture called the "fully convolutional network" 
(FCN), which is able to process data from multiple detectors and produce a single output, which 
is a reconstructed particle track.  The authors also discuss practical aspects of implementing 
FCN in a real experiment, such as the need to process data from multiple detectors and the 
importance of optimizing the network to improve performance. 

It should be emphasized, however, that the above articles did not pay special attention to 
the problem of the extreme difficulty of the tracking process due to aforementioned design 
features of such detectors as the silicon vertex detector and straw tube-based tracking system, 
which are parts of the SPD setup. The huge background of fake measurements generated in 
such detectors not only seriously complicates the tracking procedure itself, but also leads to a 
large number of falsely recognized tracks, as it was clearly demonstrated in [12] for data from 
similar detectors of BM@N experiment. In [13] a solution to the problem of screening out false 
tracks, appearing after the application of TrackNet Neural Network model for deep tracking 
data of the BM@N experiment with a fixed target, is proposed by applying a graph neural 
network (GNN) to all track-candidates, both true and false at once. The success of such two 
stages  approach  stimulated  the  idea  of  its  application  to  SPD  collider  experiment  data 
processing, which was performed in [13] with promising results.

There is, however, another alternative method of sifting out false tracks by applying a 
statistical criterion that takes into account the proximity of the sought track to some smooth 
spatial curve. This approach was explored in a joint study [14] by a team of authors of al-Farabi 
Kazakh National University and JINR, where the algorithms for sifting false tracks have been 
proposed based on the method of approximating the recognized points of the particle trajectory 
by a spatial helix line and calculating a metric describing the quality of the approximation. 
Exceeding some threshold by this metric means a poor match of the points included in the 



candidate  track  to  the  particle's  trajectory,  which  with  high  probability  means  that  this 
candidate track belongs to the false tracks. 

Since the trajectories of moving particles in the homogeneous magnetic subfield of the 
detector form spatial helical lines in the first stage of our study we used helical approximation, 
and the mean square error of approximation was taken as the quality metric. However, further 
another approximation of the found candidate tracks was also applied using a third-degree 
spatial polynomial, which allowed us to consider the case of an inhomogeneous magnetic field.

When solving the problem of particle reconstruction, we faced the problem of computing 
speed limitations related to the computational power of the computer on which the calculations 
were carried out. At the same time, on the current stage of the SPD setup design, when the exact 
characteristics  of  track  detectors  are  not  yet  fully  known,  the  development  of  event 
reconstruction algorithms in the future SPD experiment can be carried out using a dataset of 
simulated events in whose model the basic physical information about the nature of spin 
interactions and a simplified uniform spatial distribution of fake hits is embedded. The use of 
such simplified data model makes it possible to assess the fundamental possibility of applying 
the neural network approach to SPD, to evaluate the dependence of the speed of reconstruction 
algorithms and the value of their efficiency metrics.

Thus, the  main goal of this study is devoted to developing the algorithms proposed in  
[15] for both approximations and accounting for data contamination by fake measurements, and 
also to overcoming the aforementioned limitations by applying paralleling techniques. 
The study will contribute to this area by providing a new and effective solution to this problem.

THE SOLUTION OF A NON-LINEAR PROBLEM FOR THE ESTIMATION 
OF HELICAL LINE PARAMETERS

The coordinate system of the SPD tracking detectors is arranged so that the direction of 
the beam of accelerated particles coincides with the direction of the Oz axis and the direction of 
the magnetic field of the SPD. The coordinates of event vertices, i.e., particle collision points, 
are located along the Oz axis near the origin of the coordinates. Assuming homogeneity of the 
magnetic field of the detector, the particle trajectories must be close to a helical line with its axis 
directed along the Oz axis according to the magnetic field direction.  The projection of the 
helical line onto the xOy plane forms a circle of radius R in the xOy plane, centered at (x 0,y0), 
while the helical line itself extends along the Oz axis with an inclination to the Oxy plane  
defined by an angle with tangent λ. Because the circle touches the origin, we obtain y0

2 = R2-x0
2, 

which reduces the number of parameters of the helical line to three. 
Thus, we get the helical equations in the form of  

 (x-x0)2+(y-y0)2 = R 2                                                                           (1)

                                        y0
2 = R2-x0

2                                                                                 (2)
z= λ arctg((y-y0)/(x-x0))                                  (3)

To estimate the helical line parameters, we used a set of model data of particle trajectory 
measurements in the magnetic field of SPD detector, simulated according to the pixel detector 
scheme without considering background measurements. For each track with n measured points 
on it (xi,yi,zi); i=1,2,...n the values of the helical line parameters R, (x0,y0), and λ had to be 
estimated, which is a highly non-linear problem. Therefore, at first a variant of the maximum 
likelihood method with partial adoption of the approach from [15] by one of the authors was 
applied for the estimation of the parameters of the circle R, (x0,y0) in the xOy plane with the 
normalization of the minimizing functional of the form 

                                      F (R , x0 , y0 )=∑
i−1

n

❑(( xi−x0 )
2+( y i− y0 )

2−R2)2                    (4)



by the approximated gradient of the circle R2. By dividing (4) by R2 and equating derivatives of 
R, (x0,y0) to zero, we obtain normal equations, which form a second-order nonlinear system:

F x0+Hb−x0 γ=P ,

                                         H x0+Gb− y0 γ=Q ,                                          (5)

2P x0+2Q y0+γ
2=T ,

where γ= R2-x0
2-y0

2

To simplify the notation let us denote by Gauss brackets expressions like

                             ∑
i=1

n

❑xi
p y i

q=[ x p yq ]                                                     (6)

Then the coefficients in (5) are denoted as 

F=1
n

[3 x2+ y2 ] ,

G=1
n

[ x2+3 y2 ] ,

                          H=2
n

[ xy ] ,                                               (7)

P=1
n

[ x ( x2+ y2 ) ] ,

Q=1
n

[ y ( x2+ y2 ) ] ,

T=1
n

[ ( x2+ y2 )2 ] .

Excluding (x0,y0) in the system (5) and making the variable substitution γ=γ0 x ,  

where γ0=
1
n

( [ x2 ]+ [ y2 ] ) , we obtain the a fourth-degree equation

                                  x4+A0 x
3+B0 x

2+C0 x+D0=0(8)

with the coefficients
A0=A /γ0 ,

B0=B /γ0
2 ,

C0=C /γ0
3 ,

D0=
D

γ0
4 ,

(9)

where the coefficients A,B,C,D from (9) are determined by formulae (10):

A=−F−G , (10)



B=FG−T−H 2,

C=T (F+G )−2 (P2+Q2 ) ,

D=T (H 2−FG )+2 (P2G+Q2F )−4 PQH .

As it is shown in [15], when solving the equation (8) by Newton's method with zero 
initial value, we get just one of four roots that we need. Newton's method takes only 2-5  
iterations to achieve an accuracy of the order of 10-3.

 Calculating  γ=γ0 x we obtain x0, y0   from (5) and find R=√x02+ y0
2+γ

Then we can determine the standard deviation of the fitted circle

σ̂2= 1
n−3∑i=1

n

(√ ( xi−x0 )2+ ( y i− y0 )2−R )2 . (11)

To calculate the slope λ of the helical line to the Oxy plane we used linear equation (3), 
the maximum likelihood method for which gives an estimate

λ=
∑
i=1

n

zi (φi−φ0 )

∑
i=1

n

(φi−φ0 )
2

                                                                                  (12)

where φi=arctg(y i-y0)/( xi−x0), and φ0=0.
The total root-mean-square (rms) error of the fitted helical line is calculated as follows

χ2= 1
n−3∑i=1

n

( ( xi−x0 )2+( y i−√R2−x0
2 )2−R2)+(( zi−λ φi ))

2                   (13)

We are going to use this rms range to create a criterion for evaluating the quality of the 
tracking procedure.

DATA SET DESCRIPTION

The iterative method obtained in the previous section made it possible to estimate the 
helical line parameters for the model events of the SPD experiment.

For the experiments, some statistical parameters were determined for the readout data:
- number of events: 1000
- numbering of events: from 1 to 1000
- number of tracks in each event: from 5 to 61
The tracks in the events are as follows (Figures 1-3)



Figure 1. normal track (track 10) Figure 2. track with discontinuities 
(track 21)

Figure 3. track repeatedly twisted 
(track 26)

There are no fake hits in these figures. 
However, for more realistic simulations it is necessary to add fake hits to the data for  

each detector station. Since at the stage of the SPD setup design the information about the exact 
distribution of the fake hits is not yet known, it was proposed to distribute them uniformly 
corresponding to the position of each station. Figure 4 shows that the addition of only 10 fake 
hits causes a noticeable deviation in the results of helical track fitting.

To compare the effect of the level of noise on the value of our chosen criterion, we used 
further three levels of noise for the model data of each station: 0, 100 and 1000 fake hits. 

(a)                                                                       (b)
Figure 4. track with fake hits (a) – a sample of fitted trajectory with no noise, (b) – the 

same track sample fitted with 10 additional noisy hits. 

THE DATA PROCESSING STRATEGY

The data  processing strategy adopted in  [15]  to  select  the  most  optimal  χ2 value 
consisted in a preliminary clustering of all the obtained candidate tracks by the proximity of 
their corresponding χ2 values and choosing the most populated cluster to estimate further the 
χ2 only for tracks from this cluster as the most significant. 

Three stages of data processing were used to extend this strategy to three levels of  data 
contaminated by fake measurements. 

At the first stage without contaminations described in [15] all tracks in dataset were 
clustered using χ2 ,as a measure of track proximity. X-means clustering [16] was applied to 
these data The clustering was conducted in 2 phases. In the first phase initial clustering centers 
have been obtained and computed according to KMeans ++ algorithm. These initial centers 
provide a close estimate to the optimal centers due to probabilistic approach that stochastically 
determines the closeness criterion and makes clusters to be far apart from each other.  The 
remaining clustering approach relies on X-Means algorithm that refines clustering decisions by 
computing Bayesian Information Criterion in each step of the algorithm. In our study the goal 
was to achieve a stable approach to determine a false track, i.e. tracks that do not correspond to 
a correct particle trajectory.   The results of the first stage are shown in Table 1.

Cluster id Mean Std Number of elements

0 4,5178 0,3570 121

1 0,0006 0,0016 16839

2 0,0225 0,0080 1091

3 0,0585 0,0131 277



4 0,1210 0,0233 419

5 0,2260 0,0378 277

6 0.3811 0,5841 259

7 0,6182 0,0807 211

8 0,9419 0,1005 182

9 1,3246 0,1326 161

10 1,8650 0,1732 144

Table 1 Clustering results for the first 10 clusters with the lowest chi-squared values

30 clusters were obtained, in each cluster the mean and standard deviation values of χ2  for 
all cluster tracks were calculated. Table 1 shows the clustering results for the first 10 clusters 
with the lowest chi-squared values. Analysis of the clusters by mean and number of elements 
showed that 83% of the tracks fell into cluster #1, where the values of χ2 have the lowest mean 
and standard deviation. The other clusters have noticeably higher errors in the helical fitting 
procedure for the tracks. A visual comparison also showed the peculiarities of the tracks of each 
cluster. A distinctive feature of the 'good' tracks in cluster number 1 is the absence of large 
discontinuities and spirals. This noticeable dependence of track properties on the value of χ2, 
which characterizes the quality of the helix line fitting to each track, led to the idea of using the 
value of χ2 to screen out false tracks arising during their neural network reconstruction.

Then in the first stage we developed our parallelization to speed up the procedure of false 
track rejection with the help of neural network tracking.

PARALLELISATION METHODS TO SIGNIFICANTLY SPEED UP THE 
ALGORITHM TO WEED OUT FALSE TRACKS

Parallelization within an event. The ability to execute multiple cores simultaneously 
from multiple event queues provides additional parallelism within an event. The order of kernel 
execution  within  a  sector  must  be  maintained,  but  the  different  sectors  are  completely 
independent [17]. Thus, it is possible to have multiple queues and simultaneously put all cores 
for one sector in the same queue but distribute different sectors across multiple queues. This 
works up to the number of queues equal to the number of sectors, although in principle it is  
better to match the number of queues with hardware constraints [18]. 

Parallelize multiple events. A completely different and simpler approach is to execute 
kernels  for  multiple  events  simultaneously.  The  HLT  GPU  framework  allows  to  run 
independent processing components, each of which performs track reconstruction on the same 
GPU if there is enough GPU memory for all of them [19]. This approach can also load the GPU 
well but multiplies the memory requirement by the number of simultaneous queues.



Figure 5. Schematic diagram of the parallel algorithm 1.

In our study, for greater generality, two approaches were used to approximate the found 
candidate tracks. In the first approach, a spatial helix was fitted, in the second - a spatial  
polynomial of the third degree. In the algorithm 1 proposed for computing optimal helix-loop 
parameters in parallel, we used running parallel threads, where each thread performs a fitting 
procedure for events assigned to the threads according to the round-robin enumeration and 
circular loop ordering method. A schematic of the parallel algorithm 1 is shown in Figure 5.

The table of all tracks contains the coordinates of the top of the event x, y, z, the identity 
number of the event N, the station number s, the detector number d, and the track number T 
within the event. Due to the large number of tracks formed by different convents, the idea of 
improving the performance of the process of determining the optimum helical parameters for 
each of the tracks arises. Thus, in our implementation, we propose a partitioning algorithm 
based on computation using multi-threaded computation. The partitioning algorithm is based 
on the Round-Robin approach based on the idea of sequential execution of tasks. If we have k 
threads, tasks are distributed in such a way that the first thread will compute the first track in the 
given table, the second thread will compute the second element, and so on, until we reach the k-
th element (k-th thread is used to compute), after which k+1-th element will be processed by the 
first thread again, and so on, until all the elements of the table are processed. 

The algorithm 1 performance is shown in Figure 6.
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Figure 6. Running time of the parallel algorithm 1 as a function of the number of threads



Parallel Algorithm 2

In reality, due to inhomogeneity of the magnetic field of the SPD setup and the influence 
of various factors distorting the particle trajectory, such as Coulomb scattering, etc., the helical 
line in space ceases to adequately describe the trajectory. Besides, the iterative nonlinear fitting 
method described above proves to be slower than the linear approach and more complicated to 
parallelise. Therefore another method using a third degree spatial polynomial was applied. 

Assuming we have a set of n knot points P0 , P1 , ... , Pn−1, where Pi=( xi , y i , zi )
T ∈R3, the 

parametrization is  made,  which associates  knot  points  with  parameters  ui.  Based on that 
parametrization, we can find an approximation curve, f (u )=( f x(u ) , f y(u ) , f z(u )). Each of the 
approximation curves is represented by a polynomial function of certain degree k . 

f x(u )=∑
r=0

k

❑axr
∗ur

f y(u )=∑
r=0

k

❑a yr
∗ur

f z(u )=∑
r=0

k

❑azr
∗ur

The idea is to fit the curve  f (u ) such that distance to knot points from the curve is 
minimized given the parametrization u. To perform this step, we rely on the method of the least 
squares, where the sum of squares of residuals of the curve points and their corresponding knot 
points are minimized. 

To approximate iteratively parameters, it is required to make an initial parameterization, 
which is based on centripetal parameterization approach (see formula below):

u0=0 ,ui=ui−1+
|Pi−Pi−1|

1/2

∑
j=1

n−1

❑|P j−P j−1|
1/2

The input parameters for the algorithm are the same as for algorithm 1 and contain the 
coordinates of the event node x, y, z, event identification number N, station number s, detector 
number d, track number T within the event. 

The algorithm is based on fitting spatial polynomials of the third degree to track coordinates. To 
find new estimates of parameters at each iteration the Golden Ratio search method is used for 
locally minimizing the approximation error computed as described above from the residual 
values of knot points and the corresponding curve. Due to the more efficient computational 
cycle, this algorithm is characterized by a fast computation procedure and is therefore less 
computationally demanding.  

Since the golden search method demands a certain number of iterations till convergence, we 
need to determine the optimal number of iterations for convergence to the required calculation 
accuracy. To this end, we have applied convergence estimation methods according to the 
formula:



  
n=
log ⁡( ε

|b−a|
)

log ⁡(R )

((14)

Using this formula we can estimate the number of iterations n that algorithm will take to find a 
minimum on  the  given  interval  between  endpoints  ui−1 and  ui+1 for  each  corresponding 
dimension in the 3D plane for the estimated parameter value  ui. Golden Ratio search is an 
effective way of gradually reducing the interval for finding the minimum. The key is to ensure 
that no matter how many points are estimated, the minimum is within the interval defined by the 
two points adjacent to the point with the lowest estimated value.

Next, polynomials are constructed using standard quadratic error minimization techniques:

E=∑
j=1

k

|p ( x j )− y j|
2

Comparison of performances for two algorithms

By comparing the two algorithms the main aspects of each method can be highlighted:

Number of 

iterations

Computational complexity Memory 
consumption

Algorithm 1 Small High High

Algorithm 2 Average Average Average

 

Thus, it can be noted that Algorithm 2 appears to be more optimal according to the basic 
performance criteria given above.   

Parallelisation  is  based  on  the  multiprocessing  library  in  the  Python  programming 
language. As an implementation, an algorithm for splitting the array of events into threads was 
used. The running time of the parallel algorithm depending on the number of threads is shown 
in Figure 7. 

Figure 7. Comparative running times of the two proposed parallel algorithms

The  algorithm  was  tested  on  a  multi-core  compute  node  with  the  following 
characteristics: Number of cores -32, Memory - 64 Gb, Processor type - AMD Ryzen, Disk 
memory (SSD) -2 Tb.



This system supports up to 64 parallel threads, so in our experiment we have shown 
computation time results for sequential code without parallelization, with 2 parallel threads, 4 
parallel threads, 8 parallel threads, 16 parallel threads, 32 parallel threads and 64 parallel 
threads.

In our experiment we used a track table consisting of 42102 tracks. Thus, the average 
execution time of a subroutine to calculate the optimum helix parameters for one track from the 
whole set is approximately 0.5*10-3 seconds.

As we can see from the results, the algorithm shows a good speed-up, with a six-fold 
speed-up achieved. It is worth noting, however, that there is some deceleration of acceleration 
due to the additional memory fill factor. 

NEURAL NETWORK ALGORITHM FOR TRACK RECOGNITION AND ITS 
PERFORMANCE RESULTS WITH FALSE TRACKS BEFORE AND AFTER 

APPLYING THE TRACK REJECTION CRITERION

TrackNETv3 is a program that implements a deep recurrent neural network designed for 
local tracking, where each track is recovered individually in sequence, station by station. A 
detailed description of the model has been described in [20]. The quality of track recovery is 
evaluated using the two most popular metrics: recall and precision. Recall is the proportion of 
true tracks that have been fully recovered. Precision reflects the proportion of true tracks among 
all tracks found by the model. 

The neural network was trained on 50,000 model SPD events of simplified geometry. 
Each sample event, apart from tracks (on average 5), contained false (noise) tracks. Their 
number reached 60 on average. 

The trained model is able to reconstruct 90% and more tracks. But at the same time, along 
with real tracks, a neural network outputs false tracks, the number of which is much higher. 
Thus, in the total number of tracks from our set, reconstructed with TrackNETv3, the share of 
true tracks is only 2%.  

In order to increase the share of true tracks in the total number of all reconstructed tracks, 
we used a value of χ2 - as a criterion for elimination. A false track is far enough away from the 
reconstructed helix, as opposed to a true track, that if the threshold for χ2 is chosen correctly, 
only false tracks will be screened out among all reconstructed tracks. 

The screening threshold was calculated under ideal conditions, on a sample containing 
only true tracks, as the average value of χ2 plus three standard deviations, so that its value is 
0.023.  The distribution of χ2 for both true and false tracks is shown in Figure 8.

Figure. 8. Distribution of χ2 for true left and false right tracks

The dependence of the recall and precision metrics on the value of the false track 
rejection criterion is shown in Figure 9



Figure 9: Dependence of the recall and precision metrics on the value of the screening 
criterion.

In this way, the track sifting experiment increased the accuracy metric from 0.16 to 0.93. At the 
same time, the recall metric did not fall below 0.93. All experiments using Ariadne library tools 
[21].  Resource  calculations  using  the  heterogeneous  computing  platform HybriLIT (LIT, 
JINR) [22].

FALSE TRACK REJECTION IN CASE OF CONTAMINATED DATA

Due to the bias in the original dataset, the model has some limitations in terms of potentially  
poor reconstruction of true tracks in the presence of highly noisy data that contain a lot of false 
hits. The actual data from experiments shows that on average the number of false hits in each  
detector can reach n to n2, where n denotes the total number of tracks per event. Therefore, to 
test the introduced criteria of track clustering based on Chi-squared measure, we propose to 
model more realistic samples and introduce in the dataset with noisy hits corresponding to 2 
different noise levels. The first noise level will contain 100 false hits per station, while higher 
noise level will contain 1000 false hits. 

Comparative clustering results are presented in Table 2.

0 noise level (0 false 
hits)

1st noise level (100 
false hits)

2nd noise level (1000 
false hits)

Mean value of the 
center cluster

0,0005           0,0011           0,0071

Standard deviation 
value of the center 
cluster

0,0012           0,0065           0,0142

Number of elements 16422            12319            10343

   Table 2. Center cluster chi-squared depending on (a) zero level of noise, (b) 100 false hits, 
(c) 1000 false hits.

The model takes as input data about events in the form of pandas.DataFrame [23] with columns 
x, y, z, event (event number), station (station number), track (track number if the hit belongs to 
the track or -1 if it is a fake hit).



At the output, the algorithm receives candidate tracks found by the model, translates them into 
hit index format, and compares the resulting candidate tracks with real tracks based on a  
complete coincidence.

The Ariadne library was used to train and test the model.

The neural network training is based on a 3-step approach:

1) The data in the form of dataframe of coordinates (x,y,z) of hits, event, track and station 
identifiers fed as an input to a neural network

2) The network generates candidate tracks based on TrackNetv2.1 model

3) After  thresholding  procedure  based  on  clustering  based  on  chi-squared  of  track 
candidates after fitting a helix to a given trajectory, tracks are labeled as false or correct. 

The results demonstrated in Table 3 show  that the given approach can detect correct tracks with 
high levels of recall and precision. 

Recall is computed as a ratio of number of real tracks found by the model over number of real 
tracks in the dataset. 

Precision is computed as a ratio of the number of real tracks found by the model over the  
number of all reconstructed tracks.

The testing was conducted on a DGX cluster with A100 GPU 40Gb, 1Tb memory and Dual 64-
Core AMD CPU with a dataset of 10000 events. 

The training took approximately 25.6 hours to complete with 500 epochs for the training 
consisting of 100 noisy points and a bit more on a dataset with 1000 fake points 

Recall Precision Calculation time for 
1 event (seconds)

With fake hits (100 
points)

90.2 92.2 0.154

With fake hits (1000 
points)

93.5 94.5 0.127

Without fake hits 89.6 91.5 0.211

Table 3. Recall and precision with fake hits (100 and 1000 hits per station) and without fake 
hits.

CONCLUSION

The paper proposes a method of six-fold acceleration of the algorithm to sift out false tracks 
by paralleling it under the condition of preserving the efficiency of track reconstruction, and 
also demonstrates the possibility of using the rms error of helical and polynomial fitting to the 
samples that make up the found candidate track as a criterion for sifting out false tracks. It is  
shown that an appropriate choice of threshold for  χ2 increases the fraction of true tracks among 
the total number of recovered tracks by almost an order of magnitude for noiseless case,  
although in presence of fake contaminations this speeding up is much lower. A further multiple 
acceleration of the algorithm is envisaged by translating the program implementing it to C++.
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