Update on the flow measurements in the MPD-FXT configuration and initial geometry in asymmetric collisions

P. Parfenov, M. Mamaev and A. Taranenko (NRNU MEPhl, JINR)

Update on the v_n measurements in MPD-FXT

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^{\infty}v_n\cos n(arphi-\Psi_{RP}))$$

Anisotropic flow:

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

MPD in Fixed-Target Mode (FXT)

- Model used: UrQMD mean-field
 - \circ Xe+Xe, E_{kin}=2.5 AGeV ($\sqrt{s_{NN}}$ =2.87 GeV)
 - \circ Xe+W, E_{kin}=2.5 AGeV ($\sqrt{s_{NN}}$ =2.87 GeV)
- Point-like target
- GEANT4 transport
 - Particle species selection via TPC and TOF

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in\Psi_n^{EP}}$$

 Ψ_n^{EP} is the event plane angle

Modules of FHCal divided into 3 groups

Additional subevents from tracks not pointing at FHCal:

Tp: p; -1.0<y<-0.6;

Tπ: π-; -1.5<y<-0.2;

Flow methods for v_n calculation

Tested in HADES: M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R₁ is the resolution correction factor

$$R_1^{F1} = \langle \cos(\Psi_1^{F1} - \Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Previously: v_n of π^{\pm} is fixed, but...

markers - reco; lines - model

Strict fixed DCA cut (|DCA|<0.2 cm) fixes results for pions in Xe+W

However, it is better to use DCA cuts based on the n- σ distributions vs. p_{T}

nσ DCA cut

The procedure is simple and similar to the PID nσ cuts:

- Fit DCA_{x,y,z} distributions with the gaus function for (p, π^{\pm}) in different p₊ bins
- Use fit parameters as a base for no cut

2D plots show DCA_x of p, π^{\pm} with the corresponding 2σ cut ranges that are used for the v_n measurements

0.5

MPD-FXT, UrQMD, Xe+W, T=2.5A GeV

Results: $v_1(y)$

markers - reco; lines - model

Good agreement for protons and pions for y<0.5

Clear shift in $v_1(y_{cm})$ for Xe+W - preferential deflection of the participants

Good agreement for protons and pions

Good agreement for protons and pions for y<0.5

Asymmetric $v_2(y_{cm})$ dependence for Xe+W

markers - reco; lines - model

Good agreement for protons and pions

Initial geometry in asymmetric collisions

Eccentricity and its fluctuations

$$arepsilon_n = rac{\sqrt{\left\langle r^n \cos(narphi)
ight
angle^2 + \left\langle r^n \sin(narphi)
ight
angle^2}}{\left\langle r^n
ight
angle}$$

Eccentricity fluctuations can be studied similar to the v_n fluctuations:

$$\varepsilon_{n}\{2\} = \sqrt{\langle \varepsilon_{n}^{2} \rangle}, \ \varepsilon_{n}\{4\} = \sqrt[4]{|2\langle \varepsilon_{n}^{2} \rangle^{2}} - \langle \varepsilon_{n}^{4} \rangle|$$

$$\left|rac{v_n\{4\}}{v_n\{2\}}
ight|\simeq \left|rac{arepsilon_n\{4\}}{arepsilon_n\{2\}}
ight|$$
 Phys.Rev.C 84 (2011) 054901 arxiv 2507.16162 (2025)

We can use MC-Glauber model to study ε_2 and its fluctuations in Xe+Xe, Xe+W, and Au+Au collisions.

Setup

Model: MC-Glauber, UrQMD

Systems: ¹²⁴Xe+¹²⁴Xe, ¹²⁴Xe+¹⁸⁴W, ¹⁹⁷Au+¹⁹⁷Au

Beam energy: T=2.5A GeV ($\sqrt{s_{NN}}$ =2.87 GeV)

 $\sigma_{NN}^{\text{inel}}$: (Xe+Xe) 26.44 mb, (Xe+W) 26.45 mb, (Au+Au) 26.46 mb

Statistics: 100k events

ε_2 : scalable geometry, but different fluctuations! (b/A^{1/3})

In central and mid-central collisions:

The overall geometry (ϵ_2) seems to scale with A^{1/3}, but the fluctuations (ϵ_2 {4}/ ϵ_2 {2}) are different between Xe+Xe, Xe+W and Au+Au - similar trends for ϵ_4 as well

Going from b to N_{ch}-based centrality

In more realistic case, collision geometry is measured using charged particle multiplicity

Multiplicity can be generated using NBD distribution and the number of ancestors N_a:

$$N_a = fN_{part} + (1-f)N_{coll}, N_{ch} = N_a \times NBD(\mu,k); f = 0.9, \mu = 0.8, k = 10.$$

ε₂: scalable geometry, but different fluctuations! (centrality)

In central and mid-central collisions:

The overall geometry (ϵ_2) seems to scale with A^{1/3}, but the fluctuations $(\epsilon_2\{4\}/\epsilon_2\{2\})$ are different between Xe+Xe, Xe+W and Au+Au - similar trends for ϵ_4 as well

Eccentricity measurements in UrQMD

$$arepsilon_n = rac{\sqrt{\left\langle r^n \cos(narphi)
ight
angle^2 + \left\langle r^n \sin(narphi)
ight
angle^2}}{\left\langle r^n
ight
angle}$$

Phys.Rev.C 89 (2014) 6, 064908

- "OSCAR1999A" format (.f20) was used
 - It stores an entire evolution of the nucleus-nucleus collision
- Calculate ε₂ and its fluctuations the same way it is done in the MC-Glauber
 - Additionally, we used only those particles, produced within t_{pass} time frame

At T = 2.5A GeV (
$$\sqrt{s_{NN}}$$
 = 2.87 GeV):
 $t_{pass}(Xe+Xe) = 9.38 \text{ fm/c}; \quad t_{pass}(Xe+W) = 10.32 \text{ fm/c}; \quad t_{pass}(Au+Au) = 11.32 \text{ fm/c}$

ε₂: MC-Glauber vs UrQMD (centrality)

Scaling works (a bit weaker though) for both MC-Glauber and UrQMD

ε_{2} {4}/ ε_{2} {2}: MC-Glauber vs UrQMD (centrality)

Possibly due to a large passing time, eccentricity fluctuations in UrQMD have enough time to "subside" and become similar(?)

Summary

- 2σ cut for primary track selection was used this time for v_n measurements
 - Overall good agreement between "mc" and "reco"

- Quick look at the initial geometry was done for Xe+W, Xe+Xe, and Au+Au using MC-Glauber and UrQMD
 - \circ Both models show that ε_2 scales with the size of the system
 - \circ However, MC-Glauber predicts different ϵ_2 fluctuations for centrality region 0-50% while they are similar in UrQMD (accounting for t_{pass} ?)

Thank you for your attention!

Backup

DCA x

DCA y

DCA z

Scale with $A^{1/3}$ for impact parameter: ϵ_2

 ε_2 scales rather well with A^{1/3} of the nuclei (small differences with Au+Au)

ε_{2} {4}/ ε_{2} {2} check (fluctuations): scaling with A^{1/3}

Difference in central and mid-central, same in the periphery

ε_2 at different time cuts (centrality)

Both eccentricity and fluctuations highly depend on time cut.