
Calculating two-particle correlation functions
R.Lednickya,1

a Joint Institute for Nuclear Research, Dubna

The calculation of a two-particle correlation function at small particle momenta
in the pair rest frame is described in detail. In particular, the calculation using
the exact solutions of the scattering problem at given strong interaction potentials
is compared with the approximate one based only on the corresponding scattering
amplitudes. The validity of the latter is demonstrated, provided that the charac-
teristic source radius is larger than the range of the two-particle strong interaction.

1. Formalism

It is well known that in a production process of a small enough phase space
density (which is usually the case even in heavy-ion collisions) the correlations
of two particles emitted with nearly equal four-velocities p1/M1 and p2/M2

are dominated by their mutual final state interaction (FSI) and, in case
of identical particles, also by the symmetrization requirement of quantum
statistics (QS).

The FSI and QS effects on two-particle momentum correlations is usually
studied with the help of the experimental correlation function Rexp(p1, p2),
defined as a ratio of the measured momentum distribution of the two parti-
cles to the reference one (the latter obtained, e.g., by mixing particles from
different events of a given class), normalised to unity at sufficiently large
relative momenta [1, 2]:

Rexp(p1, p2) = N(p1, p2)/N
mix(p1, p2). (1)

In fact, the experimental correlation function can be affected by the admix-
ture of misidentified particles or particles from long-lived emitters [3]. Thus,
assuming that the true correlation function R is observed only in a fraction
λ of the pairs, while R ≡ R̃ = 1 for the remaining fraction 1−λ, one arrives
at the experimental correlation function:

Rexp = N [(1− λ) + λR], (2)

where N is a free normalisation parameter.
Often, a possible deviation from unity of the so called residual correlation

functions R̃i [4–6] contributing to the fraction (1− λ) =
∑

i λi of "uncorre-
lated" pairs is taken into account, modifying Eq. (2) by the substitution

(1− λ)→
∑
i

λiR̃i. (3)
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Also, a momentum dependence is sometimes introduced in the normalisation
factor N to account for possible long-range momentum correlations.

Assuming a smooth behaviour of the single-particle spectra in a narrow
region of the correlation effect (smoothness assumption [2]), the theoretical
two-particle correlation function can be calculated as [7–9]

R(p1, p2) = 1
N(j1,j2)

∑
m1m2

∑
α′m′1m

′
2...

∫
d4x′1d

4x′2 . . .

·Gα′m′1m
′
2...(x′1, p

′
1;x
′
2, p
′
2; . . . )

∣∣∣Ψ(−)αm1m2;α′m′1m
′
2...

p1p2 (x′1, x
′
2, . . . )

∣∣∣2 , (4)

where p′i
.
= PM ′

i/(M
′
1+M

′
2+. . . ), j′i andm′i are the mean four-momenta, spins

and spin projections of the particles in the intermediate channels, P = p1+p2
is the total four-momentum of the detected particles with the spins ji and
spin projections mi,

N(j1, j2) = (2j1 + 1)(2j2 + 1) (5)

is the corresponding number of the spin projections; Ψ(−)JJ ′ are the Bethe-
Salpeter amplitudes describing transitions from J ′ = {α′m′1m′2 . . . } to J =
{αm1m2} channels, properly symmetrized (anti-symmetrized) in case of iden-
tical bosons (fermions) with j1 = j2 = j:

Ψ
(−)αm1m2;J ′
p1p2 → 1√

2
[Ψ

(−)αm1m2;J ′
p1p2 + (−1)2jΨ

(−)αm2m1;J ′
p2p1 ]; (6)

GJ
′
(x′1, p

′
1;x
′
2, p
′
2; . . . ) are the emission functions describing particle emission

into the intermediate channels J ′ with the mean four-momenta {p′1, p′2, . . . }
at the space-time points {x′1, x′2, . . . }. The sum is done over the intermediate
channel flavours α′, the corresponding spin projections {m′1m′2 . . . } and the
spin projections {m1,m2} of the detected particles with the flavour quantum
numbers α. The correlation function (4) is normalised to unity in the absence
of FSI and QS, when the Bethe-Salpeter amplitudes of the transitions be-
tween different channels vanish and those between the same channels reduce
to the product of plane waves: Ψ(−)JJ ′ = exp(−ip1x′1−ip2x′2)δα′αδm′1m1

δm′2m2
,

i.e.
1

N(j1, j2)

∑
m1m2

∫
d4x′1d

4x′2G
αm1m2(x′1, p1;x

′
2, p2) = 1. (7)

As for the "smoothness" assumption, it is certainly justified for heavy-
ion collisions, being however questionable for electro- or hadro- production
processes. In any case, for processes with high numbers of participating
particles, the neglect of the space-time coherence in Eq. (4) can be justified
based on the statistical concept [10,11].

Equation (4) assumes that the production time of the particles is much
shorter than their interaction time in the final state. For a single-channel
FSI, the interaction time is given by the energy derivatives of the phase
shifts [12,13] and becomes very large for s-waves near threshold: |dδ0/dE| =
|µa0/k|, where µ = M1M2/(M1+M2) is the reduced mass of the two particles,
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k is the particle momentum in the pair rest frame (PRF) and a0 is the s-wave
scattering length. One may thus expect that (4) is valid for k substantially
smaller than a typical momentum transfer of a few hundreds MeV/c in the
production process, corresponding to the production time of ∼ 1 fm/c. If
further requiring also the intermediate states not very far from the threshold,
i.e. M ′

1 + M ′
2 + · · · ≈ M1 + M2, they practically reduce to the two-particle

states with the intermediate particles belonging to the same isospin multiplets
as the detected particles. Also, the contribution of multiparticle states with
small relative particle velocities is expected to be negligible due to a small or
moderate phase-space density of produced particles. Then, j′i = ji and the
number of the intermediate channels usually reduces to one or two.

In the following, unless it is specified otherwise, we will consider complex
multiparticle processes (like those in heavy-ion collisions) implying the equi-
libration of the spin and isospin projections. The emission function is then
independent of these projections. Since particles in the intermediate and fi-
nal channels are supposed to be the members of the same isospin multiplets,
one may substitute the two-particle emission functions Gα′m′1m

′
2(x′1, p1;x

′
2, p2)

by a universal one [8], G(x′1, p1;x
′
2, p2); here we have omitted its dependence

on the channel flavour α. The normalization condition (7) then yields∫
d4x1d

4x2G(x1, p1;x2, p2) = 1. (8)

Since we consider only processes with a moderate phase space density
of produced particles, a free motion of the two-particle c.m. system can be
factored out of the Bethe-Salpeter amplitude into the phase factor e−iPX :

Ψ(−)JJ ′
p1p2

(x1, x2) = e−iPXψ
(−)JJ ′
q̃ (x), (9)

where X = [(p1P )x1 + (p2P )x2]/P
2 is the pair c.m. four-coordinate, x =

x1−x2 is the relative four-coordinate of the emission points, q̃ = q−P (qP )/P 2

is the generalised relative four-momentum of the two detected particles, q =
p1−p2; in PRF, we have P = 0, x = {t, r}, q̃ = {0, 2k}, k = p∗1 = −p∗2. As a
result, the correlation function is determined merely by averaging the squares
of the reduced Bethe-Salpeter amplitudes ψ(−)JJ ′

q̃ (x) over the distribution
gP (x, q̃) of the relative four-coordinates of the emission points:

R(p1, p2) =
1

N(j1, j2)

∑
m1m2

∑
α′m′1m

′
2

∫
d4xgP (x, q̃) ·

∣∣∣ψ(−)αm1m2;α′m′1m
′
2

q̃ (x)
∣∣∣2 ,
(10)

gP (x, q̃) =

∫
d4XG(X + x

(p2P )

P 2
, p1;X − x

(p1P )

P 2
, p2),

∫
d4xgP (x, q̃) = 1.

(11)
Note that the reduced equal-time amplitudes in PRF coincide with the

complex conjugate of the solutions ψJ
′J
−k (r) ≡ ψ

(+)J ′J
−k (r) of the multi-channel

scattering problem, having at large r = |r| the asymptotic form of a super-
position of the plane (for α′ = α,m′i = mi) and outgoing spherical waves:

ψ
(−)JJ ′
q̃ (t = 0, r) = [ψ

(+)J ′J
−q̃ (t = 0, r)]∗ = [ψJ

′J
−k (r)]∗. (12)
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Here and below we use the same ψ-notation for the reduced Bethe-Salpeter
amplitudes and wave functions with different numbers of the arguments.

Since the scattering process, compared with the production one, corre-
sponds to the opposite time direction, the α-channel three-momentum k
enters in the scattering wave functions ψ(+) with the opposite sign and the
detected channel α = {1 + 2} is the entrance scattering channel.

The reduced non-symmetrized Bethe-Salpeter amplitudes ψ(−)JJ ′
q̃ (x) of

noninteracting particles are independent of the relative emission time t =
t1− t2 in PRF: they either coincide with the plane wave eikr (for J ′ = J ) or
vanish. On the contrary, the amplitudes of the interacting particles contain
an explicit dependence on t which is responsible for vanishing of the FSI at
|t| → ∞.

However, it can be shown that the effect of nonequal times on the short-
range FSI can be neglected on condition [7, 9]:

|t| �M(t)r2, (13)

where M(t > 0) = M2 and M(t < 0) = M1. This condition is usually
satisfied for heavy particles, like kaons or nucleons. But even for pions,
the substitution of the Bethe-Salpeter amplitudes by their values at equal
emission times in PRF usually leads to the error in the short-range FSI
contribution to the correlation function less than 10% [9].

As for the effect of non-equal times on the Coulomb FSI, it is expected to
be rather small as it scales with the two-particle Bohr radius which is usually
much larger (some tens or hundreds fm) than a space-time separation of the
particle emission points. The effect of the long-range Coulomb FSI is thus
practically insensitive to the details of this interaction at small space-time
separations. Particularly, for small short-lived systems, the effect of the
Coulomb FSI practically factorises in the Coulomb (Gamow) penetration
factor - the square of the non-relativistic Coulomb wave function at zero
separation (see Section 3):

Ac(η) ≡ |ψCoul
−k (0)|2 = 2πη[exp(2πη)− 1]−1, η = (ka)−1, (14)

where a = (µZ1Z2e
2)−1 is the Bohr radius in the channel α consisting of

two particles with the reduced mass µ and the electric charges Z1e and Z2e.
Note that a is positive (negative) for the repulsive (attractive) Coulomb
interaction; e.g., a = 43.2 fm for the pd channel.

Adopting the equal-time approximation, Eq. (10) yields

R(p1, p2)
.
=

1

N(j1, j2)

∑
m1m2

∑
α′m′1m

′
2

∫
d3rWP (r,k) ·

∣∣∣ψα′m′1m′2;αm1m2

−k (r)
∣∣∣2 , (15)

WP (r,k) =

∫
dtgP (t, r; 0, 2k),

∫
d3rWP (r,k) = 1. (16)

Passing from the representations {m1m2} and {m′1m′2} of the projections
of the particle spins j1, j2 and j′1, j′2 to the ones {Sm} and {S ′m′} of the
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total channel spins and their projections in the detected and intermediate
channels α and α′:

ψ
α′m′1m

′
2;αm1m2

−k (r) =
∑
Sm

∑
S′m′

CSm
j1m1;j2m2

CS′m′

j1m′1;j2m
′
2
ψα
′S′m′;αSm
−k (r), (17)

one can use the orthonormality of the Clebsch-Gordan coefficients at a fixed
projection m of the total spin S,∑

m1m2

CSm
j1m1;j2m2

C S̃m
j1m1;j2m2

= δSS̃, (18)

and rewrite (15) as

R(p1, p2) =
1

N(j1, j2)

∑
Sm

∑
α′S′m′

∫
d3rWP (r,k) ·

∣∣∣ψα′S′m′;αSm−k (r)
∣∣∣2 . (19)

Note that, in the representation of the total spin S, the symmetrization or
anti-symmetrization of the scattering wave functions of two identical bosons
or fermions in Eq. (6) takes on a common form:

ψα
′S′m′;αSm
−k (r)→ 1√

2

[
ψα
′S′m′;αSm
−k (r) + (−1)Sψα

′S′m′;αSm
k (r)

]
. (20)

So the wave function of two identical particles with the odd total spin S
vanishes at zero relative momentum for both bosons and fermions.

The separation r-distribution can be simulated within various dynamical
models or described in terms of simple parameterisations. In a sufficiently
narrow interval of the pair three-momenta, it is often characterised by a
Gaussian distribution with the radius parameter r0:

WP (r,k) =
1

(2
√
πr0)3

exp

(
− r2

4r20

)
, (21)

or - by three Gaussian radii rLCMS
0i , (i = out, side, longitudinal) in the longi-

tudinally comoving system (LCMS) and a shift ∆ = 〈r〉, which may result
from different emission times of nonidentical particles or due to a different
collective flow effect on particles with different masses (see [14] and references
therein):

WP (r,k) =
1

(2
√
π)3
∏

i r0i
exp

(
−
∑
i

(ri −∆i)
2

4r20i

)
, (22)

where the PRF radii r0i coincide with the LCMS ones except for the out-
radius r0out = γtr

LCMS
0out ; γt = (1 − β2

t )
−1/2 is the LCMS Lorentz factor of

the pair. At k → 0, the shift vector is practically constant, ∆(k)
.
= ∆0,

with the vanishing side and longitudinal components provided the analysed
sample possesses the azimuthal symmetry and the symmetry with respect
to longitudinal reflection, respectively: ∆0 = {∆0out, 0, 0}, where ∆0out =
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〈rout〉 = 〈γt(rLCMS
out − βttLCMS)〉 is a constant shift in the direction parallel to

the pair LCMS three-momentum.
Note that in case of independent particle emission with the same space-

time characteristics, the parameter r0 can be interpreted as a Gaussian radius
of the effective particle source, which is nearly at rest in PRF. For different
radii r01 and r02 of the sources of particles 1 and 2, the radius parameter
squared is equal to the mean of the radii squared of the two sources:

r20 =
(
r201 + r202

)
/2. (23)

2. Momentum correlations of non-interacting identical particles

In the absence of FSI, the symmetrization requirement in Eq. (20) for
identical particles takes on the form:

ψα
′S′m′;αSm
−k (r)→ 1√

2

[
e−ikr + (−1)Seikr

]
δα′αδS′Sδm′m. (24)

In fact, the symmetrized amplitude form in (24) is valid for any PRF time
separation since, for non-interacting particles, the reduced Bethe-Salpeter
amplitude ψ(−)

q (x) = eikr.
Eqs. (10) and (19) then take on the form [2,7]:

R(p1, p2) = 1
N(j1,j2)

∑
Sm

∫
d3rWP (r,k)

[
1 + (−1)S cos(2kr)

]
= 1 +

∑
S ρ̃S(−1)S〈cos(2kr)〉,

(25)

demonstrating the effect of QS: at small relative momenta Q = 2k → 0, the
contribution of the even total spin S in the correlation function is enhanced
by a factor of 2, while that of the odd S vanishes.

Here ρ̃S is intrinsic probability of the total spin S in the absence of QS
and FSI. In the case of a statistical spin mixture,

ρ̃S =
2S + 1

N(j1, j2)
,

∑
S

ρ̃S = 1. (26)

In case of independent emission of polarised particles, the intrinsic prob-
abilities depend on their polarisation states.

For spin-1/2 fermions, the polarisation state of each fermion is uniquely
determined by its intrinsic polarisation vector P̃ = 2〈Ŝ〉, twice the average of
the spin operator Ŝ, and ρ̃S depends on the scalar product of the polarisation
vectors of the two fermions [7] :

ρ̃0 =
1

4

[
1− P̃(1)P̃(2)

]
, ρ̃1 =

1

4

[
3 + P̃(1)P̃(2)

]
. (27)

For spin-1 bosons, besides the polarisation vector P̃ = 〈Ŝ〉, the polarisa-
tion state of each boson is characterised by the symmetric intrinsic polarisa-
tion tensor T̃ij = 〈3ŜiŜj − 2δij〉, i, j = x, y, z, entering in ρ̃S through their
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Frobenius inner (scalar) product:(
T̃ (1), T̃ (2)

)
F

=
∑
i

T̃i(1)T̃i(2) + 2
∑
i 6=j

T̃i(1)T̃j(2), (28)

ρ̃0 = 1
9

[
1− 3

2
P̃(1)P̃(2) + 1

3

(
T̃ (1), T̃ (2)

)
F

]
,

ρ̃1 = 1
9

[
3− 9

4
P̃(1)P̃(2)− 1

2

(
T̃ (1), T̃ (2)

)
F

]
,

ρ̃2 = 1
9

[
5 + 15

4
P̃(1)P̃(2) + 1

6

(
T̃ (1), T̃ (2)

)
F

]
.

(29)

As for the correlation term 〈cos(2kr)〉, for the product of the Gaussians
in Eq. (22) with ∆i = 0 and dispersions 〈r2i 〉 = 2r20i, one has

〈cos(2kr)〉 = exp

(
−
∑
i

r20iQ
2
i

)
→ exp(−r20Q2), (30)

where the arrow indicates the result corresponding to a spherically symmet-
rical Gaussian in Eq. (21) with the dispersions 〈ri2〉 = 2r20.

For a spherically symmetrical Gaussian r-distribution (21), Eqs. (25),
(27)-(30) yield for the experimental correlation function in Eq. (2):

Rexp = N
[
1 + λcj exp(−r20Q2)

]
, (31)

where cj is a positive (negative) number for spin-j bosons (fermions). E.g.,
c0 = 1, c1/2 = −1

2
(1+P̃2) and c2 = 1

3
[1+ 3

2
P̃2+ 1

3
(T̃ , T̃ )F ], assuming P̃(i) = P̃

and T̃ (i) = T̃ at small Q. The QS correlation at small Q thus leads to a spike
(dip) of a width 1/r0 in the correlation function of two bosons (fermions).

3. Coulomb FSI effect on two-particle momentum correlations

In the absence of short-range FSI, the scattering wave function matrix
ψ̂−k is practically diagonal in spin projections and channel flavours. Thus,
for two charged particles, neglecting a weak spin dependence of the Coulomb
interaction, one has:

ψα
′S′m′;αSm
−k (r) = ψα;Coul

−k (r)δα′αδS′Sδm′m, (32)

ψα;Coul
−k (r) = eiσ0(η)(Ac(η))1/2e−ikrF (−iη, 1, iζ), (33)

where σ0(η) = arg Γ(1 + iη) is the Coulomb s-wave phase shift,

F (x, 1, z) = 1 + xz/1!2 + x(x+ 1)z2/2!2 + . . . (34)

is the confluent hypergeometric function, ζ = kr + kr = kr(1 + cos θ) and
the Coulomb (Gamow) penetration factor Ac(η) is defined in (14). Here
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and below the quantities with the omitted channel indices correspond to the
channel flavour α.

In the absence of the Coulomb interaction, we have |a| = ∞, η = 0,
Ac(0) = 1, σ0(0) = 0, F (0, 1, iζ) = 1 and the pure Coulomb wave function
ψα;Coul
−k (r) coincides with the plane wave e−ikr.
Inserting the Coulomb wave function (33) into Eqs. (19) and (20), one

gets the correlation function due to a pure Coulomb FSI:

RCoul(k) = Ac(η)
〈
|F (−iη, 1, iζ)|2

〉
(35)

for non-identical particles and

RCoul(k) =
1

2
Ac(η)

〈
|F+|2 + F−|2 + 2

∑
S

ρ̃S(−1)S<
(
e−2ikrF+F

∗
−
)〉

(36)

for identical particles, where F± = F (−iη, 1, iζ±), ζ± = kr(1± cos θ).
One may see from Eqs. (33)-(36) that, at a mean r-separation much

smaller than the Bohr radius |a|, the pure Coulomb correlation function of
two non-identical charged particles coincides with the Coulomb (Gamow)
factor Ac(η) and that, for two identical charged particles, the Coulomb FSI
effect reduces to multiplication of the pure QS correlation function in Eq.
(25) by Ac(η).

It has been shown [15] that the Coulomb effect on the correlation function
of identical charged pions can be, with a reasonable accuracy, factored out in a
generalised Coulomb factor Ãc(η, 〈r〉), depending on the mean r-separation.
This factor can be identified with a pure Coulomb correlation function in
Eq. (35) for the particles considered as non-identical. Such an approximate
factorisation of the Coulomb effect, valid up to O(〈r〉2/a2), is widely used to
extract the pion femtoscopic radii from correlation functions of two identical
charged pions, characterised by a large Bohr radius of 387.5 fm.

Fig. 1 demonstrates the k-dependence of the pure Coulomb proton-
deuteron correlation function, changing from 1 to Ac(η) for the Gaussian
source radii r0 ranging from ∞ to 0. One may see that in the classical
region k〈r〉 � 1, the pure Coulomb correlation function approaches unity
with increasing k as [9] 1 − 〈r−1〉/(ak2), i.e. much faster than the quantum
factor Ac(η) → 1 − π/(ak)); note that 〈r−1〉 = (

√
πr0)

−1 for the Gaussian
r-distribution in Eq. (21).

4. Treating the angular dependence

Near threshold, only the lowest values of the orbital angular momenta
contribute. It is thus convenient to introduce the complete sets {L,Lz}
and {L′, L′z} in the entrance and exit channels. Directing the quantization
axis ẑ parallel to k = k(0, 0, 1) = kẑ and introducing the polar (θ) and
azimuthal (φ) angles of the vector r = r(sin θ cosφ, sin θ sinφ, cos θ) = rr̂, one
can express the angular dependence of the wave functions at given {L,Lz}
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ℛCoul

Fig. 1. The pure Coulomb proton-deuteron correlation functions RCoul(k) calcu-
lated according to Eq. (35). In decreasing order, they correspond to the Gaussian
source radii r0 = ∞, 43.2, 4, 3, 2, 1.5 and 0 fm; note that the proton-deuteron
Bohr radius a = 43.2 fm.

and {L′, L′z} through the Wigner D-functions - the matrix elements of the
rotations from the direction of a quantization axis ẑ = k̂ to the directions of
vectors r and −k:

ψα
′S′m′;αSm
−k (r) =

∑
LLzL′L′z

[(2L′ + 1)(2L+ 1)]1/2ψα
′S′m′;αSm

k;L′L′zLLz
(r)

·DL′∗
L′z ,0

(φ, θ, 0)DL
Lz ,0

(π, π, 0)

=
∑

LL′ [(2L
′ + 1)(2L+ 1)]1/2ψα

′S′m′;αSm
k;L′L (r)

· (−1)LDL′∗
m−m′,0(φ, θ, 0).

(37)

The second equality follows from vanishing of the L projection on the direc-
tion −k̂: DL

Lz ,0
(π, π, 0) = (−1)LδLz0, and - conservation of the projection of

the total angular momentum J = L + S: L′z +m′ = Lz +m = m.
As for the scattering wave function ψα

′S′m′;αSm
k , entering in symmetrized

wave function (20) for identical particles, it is given by Eq. (37) with the
substitutions DL

Lz ,0
(π, π, 0) → DL

Lz ,0
(0, 0, 0) = δLz0 and (−1)L → 1 in the

first and second equalities, respectively. The symmetrized wave function
then becomes

ψα
′S′m′;αSm
−k (r)→

∑
LL′ [(2L

′ + 1)(2L+ 1)]1/2ψα
′S′m′;αSm

k;L′L (r)

· (−1)L 1√
2

[
1 + (−1)L+S

]
DL′∗
m−m′,0(φ, θ, 0),

(38)

with non-vanishing contributions for even (L+ S) only.
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Here we use the PDG convention for the D-matrix so that it coincides
with the Hermitian conjugate Wigner D-matrix. The D-matrix elements are
related to the spherical harmonics Y L′z

L′ as:

DL′∗
L′z ,0

(φ, θ, 0) = eiL
′
zφdL

′

L′z ,0
(θ) =

(
4π

2L′+1

)1/2
Y
L′z
L′ (θ, φ); (39)

particularly, dL′00(θ) coincides with the Legendre polynomial PL′(cos θ).
Note that the correlation function (19) is independent of the azimuthal

angle, which enters through the phase factors ei(m−m′)φ only and vanishes in
the wave functions squared.

Finally, using the independence of the wave functions on the projections
of the conserved total angular momentum J = L + S (following from the
rotation invariance), the dependence on the projections m,m′ of the total
spins S, S ′ can be separated in the Clebsch-Gordan coefficients of the L-S
addition:

ψα
′S′m′;αSm

k;L′L (r) =
∑
J

CJm
L0;SmC

Jm
L′m−m′;S′m′ψ

α′α;J
k;L′S′LS(r). (40)

The situation is greatly simplified near scattering threshold, when central
forces usually dominate and both the orbital angular momentum L and the
total spin S are practically conserved:

ψα
′α;J

k;L′S′LS(r)
.
= ψα

′α;J
k;LS (r)δL′LδS′S. (41)

Eq. (40) then reduces to

ψα
′S′m′;αSm

k;L′L (r)
.
= ψα

′α;m′m
k;LS (r)δL′LδS′S

ψα
′α;m′m

k;LS (r) =
∑

J ψ
α′α;J
k;LS (r)CJm

L0;SmC
Jm
Lm−m′;Sm′

(42)

and Eq, (37) - to

ψα
′S′m′;αSm
−k (r)

.
= ψα

′α;m′m
−k;S (r)δS′S

ψα
′α;m′m
−k;S (r) =

∑
L(2L+ 1)ψα

′α;m′m
k;LS (r)(−1)LDL∗

m−m′,0(φ, θ, 0)

=
∑

LJ(2L+ 1)CJm
L0;SmC

Jm
Lm−m′;S′m′ψ

α′α;J
k;LS (r)

· (−1)LDL∗
m−m′,0(φ, θ, 0),

(43)

Note that the total spin S is conserved in nucleon-nucleon (nucleon-
antinucleon) elastic scattering as a consequence of quantum statistics (charge
conjugation symmetry) and time-reversal symmetry, in addition to parity
conservation and isospin invariance.

If further neglecting the total angular momentum (J) splitting of the
scattering wave functions and using∑

J

CJm
L0;SmC

Jm
Lm−m′;Sm′ = δmm′ , (44)
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Eq. (43) reduces to

ψα
′α;m′m
−k;;S (r) ≈ ψα

′α
−k;S(r)δm′m

=
∑

L(2L+ 1)ψα
′α

k;LS(r)(−1)LPL(cos θ)δm′m,

(45)

guaranteeing, besides the LS-conservation, also independence of the scatter-
ing wave functions on the total spin S projections.

Note that Eq. (45) was assumed in proton-deuteron phase shift analysis in
[16] and a weak J-splitting near pd threshold was confirmed in [17], contrary
to a significant J-splitting in nucleon-nucleon scattering [18].

In case of the scattering wave functions independent of the total spin
S projections (e.g., due to a weak J-splitting or due to a dominant s-wave
short-range interaction), the correlation function (19) takes on simple forms:

R(p1, p2) ≈
∑

α′S ρ̃S
∫
d3rWP (r,k)

∣∣ψα′α−k;S(r)
∣∣2

→
∑

α′SL ρ̃S(2L+ 1)
〈∣∣ψα′αk;LS(r)

∣∣2〉 (46)

for non-identical particles and

R(p1, p2) ≈ 1
2

∑
α′S ρ̃S

∫
d3rWP (r,k)

∣∣ψα′α−k;S(r) + (−1)Sψα
′α

k;S (r)
∣∣2

→ 2
∑

α′
∑

(S+L)−even ρ̃S(2L+ 1)
〈∣∣ψα′αk;LS(r)

∣∣2〉 (47)

for identical particles. The arrows indicate results of the angular averaging
in case of a spherically symmetric r-distribution WP (r,k) (like in Eq. (21));
these results follow from Eq. (45), the orthogonality of the d-functions:∫ 1

−1
d cos θdLµν(θ)d

L̃
µν(θ) =

2

2L+ 1
δLL̃ (48)

and the relation dL00(θ) = PL(cos θ).
The intrinsic probabilities ρ̃S of the total spin S are given in Eq. (26)

in case of a statistical spin mixture, or in Eqs. (27), (29) with P̃(i) →
P̃i, T̃ (i) → T̃i in case of independent production of polarised particles for
j1 = j2 = 1/2, j1 = j2 = 1 and

ρ̃1/2 =
1

3

[
1− P̃1P̃2

]
, ρ̃3/2 =

1

3

[
2 + P̃1P̃2

]
(49)

for j1 = 1/2, j2 = 1 (e.g., for pd pair).
A similar single-channel form of Eq. (46) was used in [19] to calculate the

two-proton correlation function of the protons emitted with non-relativistic
momenta in the source rest frame, taking into account the short-range inter-
action up to d-waves. To account for the J-splitting of the triplet waves, the
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appropriate incoherent average over initial and final spin projections m and
m′ was done like in Eq. (19). In fact, at k < 50 − 100 MeV/c, it is often
sufficient to account for the short-range nucleon-nucleon interaction in the
s-waves only [7, 19], which are independent of the total spin S projections
since then they coincide with those of the total angular momentum J = S.

Using Eq. (48), the angular averaging of the general form (19) of the
correlation function for a spherically symmetric r-distribution yields for non-
identical particles:

R(p1, p2)→
∑

Sm

∑
α′S′m′

∑
LL̃L′

[(2L+1)(2L̃+1)]1/2

N(j1,j2)
(−1)L+L̃

·
〈
ψα
′S′m′;αSm

k;L′L (r)ψα
′S′m′;αSm∗

k;L′L̃
(r)
〉

=
∑

SL

∑
α′S′L′

∑min(L′+S′,L+S)
J=max(|L′−S′|,|L−S|)

2J+1
N(j1,j2)

〈∣∣∣ψα′α;Jk;L′S′LS(r)
∣∣∣2〉 ;

(50)

the second expression follows from the relations∑
m′

CJm
L′m−m′S′m′C

J̃m
L′m−m′S′m′ = δJ̃J ,

∑
m

CJm
L0SmC

Jm
L̃0Sm

=
2J + 1

2L+ 1
δL̃L. (51)

In case of the LS-conservation, Eqs. (19) and (50) are simplified to:

R(p1, p2)
.
= 1

N(j1,j2)

∑
α′S

∑
m′m

∫
d3rWP (r,k)

∣∣∣ψα′α;m′m−k;S (r)
∣∣∣2

→
∑

α′SL

∑
m′m

2L+1
N(j1,j2)

〈∣∣∣ψα′α;m′mk;LS (r)
∣∣∣2〉

=
∑

α′SL

∑L+S
J=|L−S|

2J+1
N(j1,j2)

〈∣∣∣ψα′α;Jk;LS (r)
∣∣∣2〉 .

(52)

Eq. (52) reduces to (46) on the absence of the J-splitting, since

L+S∑
J=|L−S|

2J + 1

N(j1, j2)
=

(2L+ 1)(2S + 1)

N(j1, j2)
= (2L+ 1)ρ̃S, (53)

where the last equality follows from Eq. (26) for ρS in case of the statistical
spin mixture.

For identical particles, the correlation functions in Eqs. (50) and (52) for a
spherically symmetric r-distribution should be multiplied by 2 and summing
done for even (L̃+ S) and (L+ S) only.

5. Calculation details

5.1. Contribution of the outer region
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5.1.1. Treating the Coulomb and strong interaction One may introduce
separation parameter ε > d to split the correlation function in the outer
(r > ε) and inner (r ≤ ε) contributions: R = R>ε+R<ε. Outside the range of
the strong interaction potential, r > ε > d, the scattering wave functions are
independent of the actual potential form and can be analytically expressed
through the corresponding scattering amplitudes [7, 20]. In the considered
case of the LS-conservation, one then has for r > d:

ψα
′α;m′m

k;LS (r) = ψ̃α
′α;m′m

k;LS (r)

= eiσL(ηα)iL
[
FL(ηα,ρα)

ρα
δα′αδm′m +

(
µα′
µα

)1/2
kα′f

α′α;m′m
k;LS

HL(ηα′ ,ρα′ )
ρα′

]
,

(54)

where ρα′ = kα′r and ηα′ = (kα′aα′)
−1 is defined as in (14) with the two-

particle Bohr radius aα′ in the channel α′ and channel momentum kα′ =
kα′(k); the function HL(η, ρ) = GL(η, ρ) + iFL(η, ρ) is a Hankel type combi-
nation of the regular (FL) and singular (GL) Coulomb functions at a given
orbital angular momentum L, σL is the Coulomb L-wave phase shift:

σL(η) = arg Γ(L+ 1 + iη) = σ0(η) +
L∑
l=1

arctan
η

l
; (55)

µα′ is the relativistic generalisation of the reduced mass: µα′ = E ′1E
′
2/(E

′
1 +

E ′2), where E ′i = (M ′2
i + k2α′)

1/2, E ′1 + E ′2 = E1 + E2 ≡ E; µα′ = E/2 for
particles with equal masses.

The dependance of the scattering amplitudes on the total spin S pro-
jections can be factored out in the Clebsch-Gordan coefficients of the L-S
addition as in Eq. (42):

fα
′α;m′m

k;LS (r) =
∑
J

CJm
L0;SmC

Jm
Lm−m′;Sm′f

α′α;J
k;LS (r), (56)

For practical calculations, it is convenient to perform the summation over
L in the pure Coulomb part of the wave function (43) analytically:

ψα;Coul
−k (r) =

∞∑
L=0

(2L+ 1)iLeiσL(η)
FL(η, ρ)

ρ
(−1)LPL(cos θ), (57)

where the pure Coulomb wave function ψα;Coul
−k (r) is expressed through the

confluent hypergeometric function F [−iη, 1, ρ(1 + cos θ)] in Eq. (33). Then,
one can rewrite the wave function in the outer region as

ψ̃α
′α;m′m
−k;S (r) = ψα;Coul

−k (r)δα′αδm′m +
∑

L(2L+ 1)iLeiσL(ηα)
(
µα′
µα

)1/2
· kα′fα

′α;m′m
k;LS

HL(ηα′ ,ρα′ )
ρα′

(−1)LDL∗
m−m′,0(φ, θ, 0).

(58)



14

Note that the wave function representation (58) was first used in [7] to
account for the effect of the single-channel short-range FSI on correlation
functions near threshold in the s-wave approximation and generalised to the
multi-channel case in [8].

In the absence of the Coulomb interaction, we have η = 0, σL(0) = 0,
FL(0, ρ) = SL(ρ), GL(0, ρ) = CL(ρ), HL(0, ρ) = hL(ρ) ≡ CL(ρ) + iSL(ρ) and

ψα;Coul
−k (r) = e−ikr =

∞∑
L=0

(2L+ 1)iLjL(ρ)(−1)LPL(cos θ). (59)

The Riccati-Bessel functions SL and CL are simply related to the spherical
Bessel functions jL and yL of the first and second kind, respectively: SL(ρ) =

ρjL(ρ) and CL(ρ) = −ρyL(ρ). Their combination hL(ρ) = iρh
(1)
L (ρ), where

h
(1)
L (ρ) is the spherical Hankel function of the first kind; hL(ρ) → ei(ρ−Lπ/2)

at ρ→∞ and, particularly, for L = 0, 1, 2:

h0(ρ) = eiρ, h1(ρ) = eiρ
(

1

ρ
− i
)
, h2(ρ) = eiρ

(
3

ρ2
− 3i

ρ
− 1

)
. (60)

In single-channel case, absent J-splitting and absent Coulomb interaction,
Eqs. (45) and (58) yield in the outer region:

ψ̃m
′m

k;LS(r) = eiδLS [jL(ρ) cos δLS − yLS sin δLS] δm′m

→ eiδLS sin (ρ+ δLS − Lπ/2) δm′m/ρ,

(61)

where the arrow indicates the limit ρ→∞.
5.1.2. Treating the isospin and multi-channel unitarity One can consider

the scattering amplitudes fα
′α;J

k;LS as the elements of the scattering amplitude
matrix in the channel flavour representation, satisfying the matrix unitarity
condition:

=f̂JLS = f̂J+LS <k̂f̂
J
LS, (62)

where k̂ is the diagonal matrix formed by the channel momenta kα′ : kα′α′′ =
kα′δα′α′′ ; here and below, the amplitude dependence on the α-channel mo-
mentum k is omitted: fα

′α;J
k;LS ≡ fα

′α;J
LS .

The invariance with respect to the time reflection requires the symmetry
of the amplitude matrix: fα

′α′′;J
LS = fα

′′α′;J
LS .

In the case of a single channel α near threshold (e.g., α = π+K+, π+p
or pd), the unitarity condition (62) allows one to express the amplitudes
fJLS ≡ fαα;JLS through the phase shifts δJLS ≡ δαα;JLS :

fJLS =
e2iδ

J
LS − 1

2ik
= (k cot δJLS − ik)−1 =

1

k
eiδ

J
LS sin δJLS. (63)

Sufficiently far above the threshold, when the isospin violation induced
by Coulomb interaction can be neglected, one can express the elements of
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the amplitude matrix in the channel flavour representation through the ele-
ments of the diagonal amplitude matrix in the representation of the conserved
channel isospin T :

fα
′α;J

LS =
∑
T

CTt
T1t1;T2t2

CTt
T1t′1;T2t

′
2
fT ;JLS , (64)

where Ti and t′i are the i-th particle isospin and its projection in the channel
with flavour α′.

Thus, for the channels α = {π−K+, π+K−, π−p, π+Ξ−} and the corre-
sponding ones β = {π0K0, π0K̄0, π0n, π0Ξ0}, one has

fαα;JLS = 1
3

(
2f

J ;1/2
LS + f

J ;3/2
LS

)
, fββ;JLS = 1

3

(
f
1/2;J
LS + 2f

;J3/2
LS

)
,

fβα;JLS = fαβ;JLS = −
√
2
3

(
f
1/2;J
LS − f 3/2;J

LS

)
.

(65)

Analogous relations, with the substitutions 1/2 → 0 and 3/2 → 2 of the
channel isospins, take place for the channels α = {π+π−} and β = {π0π0}
and even values of L ≡ J while, for odd L-values, fα

′α′′,L
L0 = f 1;L

L0 δα′αδα′′α.
For the channels α = {K+K−, K−p, p̄p} and the corresponding ones β =

{K0K̄0, K̄0n, n̄n}, one has

fαα;JLS = fββ;JLS =
1

2

(
f 0;J
LS + f 1;J

LS

)
, fβα;JLS = fαβ;JLS = −1

2

(
f 0;J
LS − f

1;J
LS

)
. (66)

In the absence of the Coulomb effects, the unitarity condition (62) allows
one to express the amplitude matrix in the channel flavour representation

through real symmetric matrices1 K̂JLS or M̂J
LS = k̂L

(
K̂JLS

)−1
k̂L:

f̂JLS =

((
K̂JLS

)−1
− ik̂

)−1
≡ k̂L

(
M̂J

LS − ik̂2L+1
)−1

k̂L. (67)

The second equality in (67) explicitly takes into account the threshold be-
havior so that the M̂-matrix can be represented by Taylor expansion in the
kinetic energy, starting from zero power.

Near threshold, the elements of the diagonal M̂-matrix in the isospin rep-
resentation are usually parameterized in the so called effective range approxi-
mation, taking into account only the first two terms in the Taylor expansion:

MT ;J
LS

.
=

1

aT ;JLS

+
1

2
dT ;JLS k

2, (68)

where aT ;JLS is the scattering "length" and dT ;JLS is the effective "range" (they
have the dimension of a length for L = 0 only). Being sensitive to the

1In the presence of other open channels in addition to {α} or {α, β}, the K̂- and M̂-
matrices become complex, when reducing their dimension to one or two.
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potential range, the M̂-matrix elements are often called the effective range
functions.

Note that neglecting the difference of the channel momenta (e.g., for k
sufficiently far above the threshold), the amplitudes fT ;JLS satisfy the single-
channel unitarity condition and can thus be expressed through the corre-
sponding phase shifts δT ;JLS according to (63), implying

(KT ;JLS )−1 = k−2LMT ;J
LS = k cot δT ;JLS . (69)

One can improve the isospin relations (64)-(66), applying them to the
nearly constant M̂-matrix near threshold (or - to the matrices of scattering
lengths and effective radii) rather than to the amplitude matrix f̂ , thus taking
into account the isospin violation only through the mass differences of the
particles belonging to the same isospin multiplet, reflected in the difference
of the channel momenta.

In the presence of the Coulomb interaction, the K̂- and M̂-matrices enter
into the amplitude matrix through a Coulomb modified equation (67) (see,
e.g., [21] and references therein):

f̂JLS = A
1/2
c (η̂)π

1/2
L (η̂)

((
K̂JLS

)−1
− iπL(η̂)k̂c

)−1
π
1/2
L (η̂)A

1/2
c (η̂)

≡ A
1/2
c (η̂)π

1/2
L (η̂)k̂L

(
M̂J

LS − iπL(η̂)k̂2Lk̂c

)−1
k̂Lπ

1/2
L (η̂)A

1/2
c (η̂),

(70)

k̂c = Ac(η̂)k̂ − 2ih(η̂)â−1, (71)

where â is a diagonal matrix made from the channel Bohr radii: aα′′α′ =
aα′δα′′α′ ; Ac(η̂), πL(η̂) and h(η̂) are the diagonal matrices with the diagonal
elements given by the corresponding function values at the arguments ηα′ ;
the functions

πL(η) =
L∏
l=1

(1 +
η2

l2
), (72)

π0(η) = 1, and

h(η) = − ln |η| − C + η2
∑∞

l=1[l(l
2 + η2)]−1

η�1−−→ − ln |η| − C + 1.20206η2 − 1.03693η4 + 1.00835η6 + . . .

η�1−−→ η−2

12
+ η−4

120
+ η−6

252
+ . . . ,

(73)

where C .
= 0.577216 is the Euler constant and the arrows indicate low and

high η2 expansions; the η2 and η−2 terms in these expansions are sufficient
to achieve better than a percent accuracy at η < 0.3 and η > 3, respectively.
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In the two-channel case, the explicit matrix inversion in (70) yields

fαα;JLS = Ac(ηα)πL(ηα)k2Lα

[
Mββ;J

LS − ikββc k2Lβ πL(ηβ)
]
/DJ

LS,

fβα;JLS = fαβ;JLS = − [Ac(ηα)πL(ηα)Ac(ηβ)πl(ηβ)]1/2 (kαkβ)LMβα;J
LS /DJ

LS,

fββ;JLS = Ac(ηβ)πL(ηβ)k2Lβ

[
MJ ;αα

LS − ikααc k2Lα πL(ηα)
]
/DJ

LS,

DJ
LS =

[
Mαα;J

LS − ikααc k2Lα πL(ηα)
] [
Mββ;J

LS − ikββc k2Lβ πL(ηβ)
]
−
(
Mβα;J

LS

)2
.

(74)
The multi-channel short-range FSI representation (70-74) was used in [8, 9]
for the s-wave amplitudes to calculate correlation functions near threshold.

In the single-channel case, the Coulomb modified amplitude fJLS in Eq.
(70) is expressed through the phase shift δJLS according to Eq. (63) and the
expression (69) of the effective range functions through the phase shift is
modified as:

(KJLS)−1 = k−2LMJ
LS = πL(η)

[
Ac(η)k cot δJLS +

2

a
h(η)

]
. (75)

Note that a small violation of the isospin symmetry due to the Coulomb
interaction can significantly affect the isospin relations (64-66) if applying
them to the M-matrix elements in the case, when the latter are small and
comparable to this violation.

5.2. Accounting for the inner region
In the following and for Monte Carlo calculations, it is useful to introduce

the weight due to the effects of FSI and QS, entering in Eqs. (10), (15), (19)
and (52) for the correlation function in case of a universal (independent of
the spin projections and intermediate channel flavours) emission function G
and the related universal r-separation distribution WP :

w(r,k) = 1
N(j1,j2)

∑
m1m2

∑
α′m′1m

′
2

∣∣∣ψα′m′1m′2;αm1m2

−k (r)
∣∣∣2

= 1
N(j1,j2)

∑
Sm

∑
α′S′m′

∣∣∣ψα′S′m′;αSm−k (r)
∣∣∣2

→ 1
N(j1,j2)

∑
Sm

∑
α′m′

∣∣∣ψα′α;m′m−k;S (r)
∣∣∣2 ,

(76)

where the arrow indicates the case of the conserved total spin S. Averaging
the weight over the r-separation of the particle emission points in PRF, one
obtains the correlation function:

R(p1, p2) = 〈w(r,k)〉 ≡
∫
d3rWP (r,k)w(r,k). (77)

For uncorrelated particles, w(r,k) = 1 and R = 1.
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Assuming the characteristic radius r0 of the r-distribution WP (r,k) suf-
ficiently larger than the range d of the strong interaction potential, one can
choose the separation parameter ε substantially smaller than the characteris-
tic source radius r0. In such a case, one can either approximately neglect the
inner contribution of the short-range FSI at r < ε, or estimate it using the
well-known integral relations for the solutions of a multi-channel scattering
problem as described below (see also [8] and references therein).

For r < ε < r0, the separation distribution can be considered independent
of r and taken out of the integral in (77) at its value at the origin (see
a discussion of the validity of this approximation in the next Section) to
calculate contribution R<ε to the correlation function from the region r < ε
as

R<ε
.
= WP (0,k)

∫ ε

0

d3rw(r,k) ≡ WP (0,k)I(ε, k), (78)

where the volume integral I(ε, k) represents an average of the ones at given
spin states {m1m2} or {Sm}:

I(ε, k) =
1

N(j1, j2)

∑
m1m2

Im1m2(ε, k) ≡ 1

N(j1, j2)

∑
Sm

ISm(ε, k). (79)

The integrand in the volume integral at a given spin state is the same sum
of the contributing scattering wave functions squared as in Eqs. (76), e.g.:

ISm(ε, k) =

∫ ε

0

d3r
∑
α′S′m′

∣∣∣ψα′S′m′;αSm−k (r)
∣∣∣2 . (80)

The non-symmetrized wave functions are the solutions of the coupled
Schrodinger equations

Lα
′S′m′;αSm
−k (r) ≡

∑
α′′S′′m′′ [(∇2 + k2α′)δα′α′′δS′S′′δm′m′′

− 2µα′V
α′S′m′;α′′S”m′′(r)]ψα′′S′′m′′;αSm−k (r) = 0.

(81)

Forming the identities

∂k2
α′
Lα
′S′m′;αSm
−k (r)

[
ψα
′S′m′;αSm
−k (r)

]∗
− ∂k2

α′
ψα
′S′m′;αSm
−k (r)

[
Lα′m′;αm∗(r)

]∗
= 0

(82)
from bilinear products of these equations, the wave functions and their
derivatives ∂k2 = ∂/∂k2 and summing them over all contributing channels
{α′S ′m′}, one can express the sum of the wave functions squared at a given
{Sm} as the gradient of a vector function:∑

α′S′m′

∣∣∣ψα′S′m′;αSm−k (r)
∣∣∣2

= ∇
∑

α′S′m′ [∂k2α′ψ
α′S′m′;αSm
−k (r)∇[ψα

′S′m′;αSm
−k (r)]∗

− [ψα
′S′m′;αSm
−k (r)]∗∇∂k2

α′
ψα
′S′m′;αSm
−k (r)].

(83)



19

This expression follows from the hermiticity of the potential V̂ = V̂ + and
the relation µα′∂k2

α′
= µα∂k2α .

Note, however, that the sum in the FSI weight (76) is done only over
the two-particle states {α′S ′m′} with the particles belonging to the same
isospin multiplets as the particles in the detected channel. Therefore, we
have to neglect the contribution of the eventual additional channels also on
the right-hand side of (83). Such a truncated equation is exact for r > d,
when the Schrodinger equations are decoupled and (83) splits into separate
equations for each channel {α′S ′m′}. We assume an approximate validity of
the truncated Eq. (83) also for r < d.

Then, inserting (83) or its truncated form into (80) and using the Gauss
theorem, the volume integral ISm(ε, k) reduces to the difference of the surface
integrals JSm(r, k) on the spheres of the radii r = ε and r → 0. Introducing
the functional

Aα′ [φ, ψ] =
∂φ

∂kα′

∂ψ

∂r
− ψ ∂2φ

∂kα′∂r
, (84)

the integral over the surface of a sphere of the radius r can be written as

JSm(r, k) =
∑

α′S′m′
r2

2kα′

∫
d cos θdφAα′

[
ψα
′S′m′;αSm
−k (r), ψα

′S′m′;αSm∗
−k (r)

]
=
∑

LL̃[(2L+ 1)(2L̃+ 1)]1/22πr2(−1)L+L̃

·
∑

α′S′m′
1
kα′
Aα′

[
ψα
′S′m′;αSm

k,L′L (r), ψα
′S′m′;αSm∗

k,L′L̃
(r)
]

→
∑

L(2L+ 1)2πr2
∑

α′m′
1
kα′
Aα′

[
ψα
′α;m′m

k,LS (r), ψα
′α;m′m∗

k,LS (r)
]
,

(85)
where the second equality follows from the expansion of the angular de-
pendence of the wave functions through the D-functions in (37) and the
orthogonality relation (48). Averaging Eq. (85) over spin states {Sm} of the
detected particles and using relations (51), one gets, similar to Eqs (50) and
(52):

J(r, k) =
∑

α′L′S′LSJ
1
kα′

2J+1
N(j1,j2)

2πr2 1
kα′
Aα′

[
ψα
′α;J

k,L′S′LS(r), ψα
′α;J∗

k,L′S′LS(r)
]

→
∑

α′LSJ
2J+1

N(j1,j2)
2πr2 1

kα′
Aα′

[
ψα
′α;J

k,LS (r), ψα
′α;J∗

k,LS (r)
]
.

(86)

The arrows in Eqs. (85) and (86) indicate the case of the LS-conservation.
Using the finiteness of the wave functions and their derivatives at r → 0,

i.e. J(0, k) = 0, we have

I(ε, k) = J(ε, k)− J(0, k) = J̃(ε, k) ≡ Ĩ(ε, k). (87)

The second equality in (87) assumes ε > d so that the surface integral
J(ε, k) = J̃(ε, k) is given by Eq. (86) with the outer wave functions ψk = ψ̃k
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calculated with the help of the scattering amplitudes according to Eq. (54).
Here and below, the tilde denotes the quantities calculated with the help of
the outer wave functions even in the inner region.

In case of the LS-conservation, using equation (54), unitarity condition
(62) for the elastic αα transition:

=fαα;JLS =
∑
α′

kα′
∣∣∣fα′α;JLS

∣∣∣2 , (88)

the Wronskian relation

GL∂ρFL − FL∂ρGL = 1 (89)

and the relation ∂/∂r ≡ ∂r = kα′∂ρα′ , one obtains: 1

Ĩ(ε, k) = 2π
k3α

∑
L(2L+ 1)Aα[FL, FL]

+
∑

LSJ
2J+1

N(j1,j2)
{ 2π
kα
<
(
∂kαf

αα;J
LS + k−1α fαα;JLS

)
+ 4π

k2α

[(
Aα[GL, FL]− 1

2

)
<fαα;JLS − Aα[FL, FL]=fαα;JLS

]
+
∑

α′ [ 2π
kα′

µα′
µα

(Aα′ [FL, FL] + Aα′ [GL, GL])
∣∣∣fα′α;JLS

∣∣∣2
+ 4π

kα
=
(
kα′f

α′α:J∗
LS ∂kαf

α′α;J
LS

)
]},

(90)

where the first term represents the pure Coulomb contribution to the inner
volume integral:

2π
k3α

∑
L(2L+ 1)Aα[FL, FL] =

∫ ε
0
d3r
∣∣∣ψα;Coul
−k (r)

∣∣∣2
= 4π

k2α

∑
L(2L+ 1)

∫ ε
0
drF 2

L.

(91)

In the absence of the Coulomb interaction, ψα;Coul
−k (r) reduces to the plane

wave exp(−ikr) and expression (91) coincides with the volume 4
3
πε3.

Note that on the absence of the J-splitting, one may perform the sum over
J in Eq. (90) according to Eq. (53) and make the substitution

∑
J(2J+1)→

(2L+ 1)(2S + 1).

1In the first square brackets in Eq. (90), we have omitted the term [=fαα;JLS −∑
α′ kα′ |fα

′α;J
LS |2]η∂ησL(η), proportional to the momentum derivative of the Coulomb L-

wave phase shift, ∂kσL(η) = −k−1η∂ησL(η), as this term vanishes due to the unitarity
condition (88), To guarantee its vanishing in case of a truncated sum over contributing
channels α′, one should truncate this sum also in the unitarity condition (88) and use
its truncated form to substitute =fαα;JLS in Eq. (90). Usually, kα′ |fα′α|2 � |fαα| for the
rejected channels α′ and their contribution to Eq. (90) can be expected small. Note that
outside the Coulomb region, |η| > 1, the magnitude of the factor η∂ησL is smaller than
0.2, 0.6, 1 and lnL for L = 0, 1, 2 and large L, respectively.
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In the considered case of d < ε < r0, both the contributions R<ε = R̃<ε

and R>ε = R̃>ε of the inner and outer regions to the correlation function are
determined by the outer wave functions. They are thus uniquely determined
by the scattering amplitudes, independent of a concrete form of the short-
range interaction potentials.

Let us now increase the separation parameter ε by a small amount δε
so that the r-separation distribution can be still considered constant for r <
ε+δε. Then the inner contribution to the correlation function is increased by
δR = R<ε+δε−R<ε while, the contribution of the outer region is decreased by
exactly the same amount so that the complete correlation function remains
unchanged. Clearly, it remains unchanged also, when decreasing ε by the
amount δε, guaranteeing that ε − δε > d. It is easy to see, however, that
one can formally decrease ε even below the range d of the strong interaction
potential and still have the complete correlation function unchanged if using
the outer wave functions also in the inner region.

We may conclude that the complete correlation function is independent of
the separation parameter ε provided that the r-separation distribution can be
substituted by a constant for separations r < ε. Of course, it is implied that
r0 is substantially larger than the range d of the strong interaction potential
so that the r-separation distribution can be considered constant for r < d;
no other information about the short-range interaction potential is required.

In the case, when the short-range FSI can be neglected in all orbital an-
gular momentum waves except for L = 0, the volume integral Ĩ(ε, k) is finite
even at ε = 0. Putting ε = 0 and extending the outer weight into the whole
inner region, allows one to calculate the correlation function analytically for
some simple r-separation distributions, e.g., for a Gaussian one [7]. The inner
correction is then determined by a limiting value of the s-wave contribution
to the volume integral Ĩ(ε, k) at ε→ 0, given in Eq. (A.12).

The extension of the outer FSI weight w̃ down to r = 0 is however im-
practical in case of a non-negligible short-range interaction in higher orbital
angular momentum waves since they lead to compensating divergencies at
ε → 0 of the R̃>ε and R̃<ε, both calculated with the help of the outer wave
functions.

Further, to avoid the problem of a slow convergence of the L-expansion
of the Coulomb wave function, one can use the analytical expression (33) for
the latter down to ε = 0 and rewrite the correlation function R .

= R̃ε as

R = RCoul + ∆R .
= RCoul + ∆R̃ε. (92)

For nonidentical particles and spherically symmetric r-distribution, the con-
tribution of the short range FSI ∆R is given by Eqs. (46), (50) or (52), mod-
ified by the following substitution of the scattering wave functions squared:

|ψ...LS|2 → |ψ...LS|2 − |FL(η, ρ)/ρ|2. (93)

For ∆R̃ε
.
= ∆R one has:

∆R̃ε = R̃>ε −RCoul
>ε +WP (0,k)∆Ĩ(ε, k), (94)
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where RCoul
>ε is the outer Coulomb contribution to the correlation function,

calculated according to (77) by integrating the Coulomb weight wCoul =

|ψα;Coul
−k |2 for r > ε. The term WP∆Ĩ represents the inner short-range FSI

contribution, where ∆Ĩ is given by equation (90) with the omitted first term
- the inner contribution of the Coulomb distorted plane wave in Eq. (91):

∆Ĩ(ε, k) = Ĩ(ε, k)− 2π

k3α

∑
L

(2L+ 1)Aα[FL, FL]. (95)

For identical particles, due to the symmetrization requirement of QS in
Eq. (38), only the terms with even (L + S) enter in the above sums over L
and S, multiplied by a factor of 2.

Since ∆Ĩ(ε, k) in (94) represents a volume integral of the additional weight
due to the strong FSI over a sphere of the radius ε, the Monte Carlo weight,
approximately recovering the correlation function in (92), can be defined as
(see also equation (17) in [22]):

w(r,k) = w̃(r,k) for r > ε,

w(r,k) = wCoul(r,k) +
(
4π
3
ε3
)−1

∆Ĩ(ε, k) for r < ε,

(96)

where w̃ is calculated according to (76) with the help of the outer wave
functions.

Since the constant Monte Carlo weight in the inner region is in fact inte-
grated over the true r-distribution, it corresponds to Eq. (94) with WP (0,k)
substituted by a smaller value, determined by the integration of a decreasing
WP (r,k) with the increasing r-separation:

WP (0,k)→ W<ε =

(
4π

3
ε3
)−1 ∫ ε

0

d3rWP (r,k). (97)

Such a substitution somewhat improves the accuracy of Eq. (94) and extends
its validity to lower values of the effective radius r0.

6. Example calculations

Consider the proton-deuteron correlation function calculated according
to Eqs. (92)-(94) in the s-wave approximation for the short-range FSI, using
the parametrisation of the M-function in Eq. (75) similar to the effective
range approximation in Eq. (68), with the added shape parameter P S

0S:

MS
0S = Ac(η)k cot δS0S +

2

a
h(η)

.
=

1

aS0S
+

1

2
dS0Sk

2 + P S
0Sk

4 (98)

and the parameters given in Table 2 of [16], obtained from the above expres-
sion of theM-function through the phase shift.
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(a) R(k) at k = 10 MeV/c as a function
of the separation parameter ε; the curves in
increasing order correspond to r0 = 1.5, 2, 3
fm
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(b) R(k) at ε = 1 fm and r0 = 3 fm (middle
blue curve); it represents a sum of the inner
Coulomb contribution and the outer, r > ε,
Coulomb and strong FSI contribution (up-
per orange curve) and the inner strong FSI
contribution (lower green curve)

Fig. 2. The proton-deuteron correlation functions R(k) calculated in the s-wave
approximation for the strong FSI according to Eqs. (92)-(94) (a) and, with the
substitution in Eq. (97) (b)

Fig. 2(a) shows the proton-deuteron correlation functions calculated ac-
cording to Eqs. (92)-(94) in the s-wave approximation for the short-range
FSI at k = 10 MeV/c and Gaussian source radii r0 = 1.5, 2, 3 fm as func-
tions of the separation parameter ε. It demonstrates a weak dependence of
the correlation functions on ε up to ε . r0.

Note that the correlation function R̃ε should be independent of ε in case of
the nearly constant separation r-distribution inside a sphere of a radius larger
than the range d of the strong interaction potential. Fig. 2(a) demonstrates
that, at ε . r0, the R̃ε are rapidly approaching their values at ε = 0 fm (the
horizontal lines), thus indicating the effective r-separation uniform sphere
radius comparable or somewhat less than r0.

In fact, the deviation of the Gaussian r-distribution from a constant leads
to a power-like ε-dependence of the approximate strong interaction contribu-
tion ∆R̃ε =

∑
LS ρ̃S∆R̃εLS to the correlation function at small values of k

and ε:
∆R̃εLS −∆RLS ∼ Ac(η)(aLk

L)2ε3−2L/r50; (99)

recall that the dimension of the scattering "length" aL ≡ aJLS is fm2L+1.
Thus, with the decreasing ε, the ∆R̃εLS approaches a constant as ε3 for

L = 0, as ε for L = 1 and, it even diverges as 1/ε for L = 2. This fact limits
practical applicability of Eqs. (92)-(94) for Gaussian-like r-distributions to
the case of negligible short-range strong FSI with L > 1 or - to sufficiently
large systems with r0 essentially larger than the range d of the strong FSI
and sufficiently small k. In any case, the applicability of Eqs. (92)-(94) for
"small" systems can be improved by the substitution in Eq. (97) and - an
optimal choice of ε . r0 (see below and the next Section).

Fig. 2(b) demonstrates k-dependence of the proton-deuteron correlation
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(a) R(k) at ε = 0.2 fm
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Fig. 3. The proton-deuteron correlation functions R(k) in increasing order for r0 =

1.5, 2, 2.5, 3, 4, 5 fm, calculated in the s-wave approximation for the short-range
FSI according to Eqs. (92)-(94), (97) at ε = 0.2 fm (a) and 1 fm (b)

function at r0 = 3 fm - middle curve, calculated in the s-wave approximation
for the short-range FSI using Eq. (94) modified by the substitution in Eq.
(97). The upper curve represents a sum of the inner Coulomb contribution
and the full Coulomb and strong interaction contribution in the outer region
(r > ε) and the lower one - the inner strong interaction contribution.

The proton-deuteron correlation functions at r0 = 1.5, 2, 2.5, 3, 4 and 5
fm, calculated in the s-wave approximation for the short-range FSI according
to Eqs. (92)-(94), (97), are shown in Figs. 3(a) and 3(b) for ε = 0.2 and 1
fm, respectively.

Figs. 2(a) and 3 demonstrate a sharp decrease of the correlation func-
tion, when decreasing the source radius r0 from 2 to 1.5 fm. This sharp fall
down and unphysical negative values of the correlation function at r0 < 1.5
fm and k < 10 MeV/c indicate that the range d of the strong interaction
proton-deuteron potential cannot be considered smaller than the character-
istic r -separation of particle emitters at so small r0 values. These figures
also demonstrate a substantial, though insufficient, improvement of the cor-
relation function at r0 = 1.5 fm, when increasing ε from 0.2 to 1 fm and - a
minor effect of this increase at higher values of r0.

In fact, from the approximate expression for the correlation function at
small k (when the short-range FSI is dominated by s-waves) and r0 signifi-
cantly smaller than the Bohr radius |a| (see [7] and Eq. (A.12)):

R(k → 0) ≈ Ac(η)
∑
S

ρ̃S

[
1 +

1

2

∣∣∣∣aS0Sr0
∣∣∣∣2(1− 1

2
√
π

dS0S
r0

)
+

1√
π

<aS0S
r0

]
,

(100)
as well as, from the fact that the inner correction is proportional to the ratio
dS0S/r0 in the curved brackets, one may consider the absolute value of the
effective range dS0S as a measure of the strong interaction potential range d
at a given total spin S.

Note that aS0S = −2.73± 0.10 fm and −11.88±0.40
0.10 fm, dS0S = 2.27± 0.12

fm and 2.63±0.10
0.20 fm for the proton-deuteron s-wave scattering with the total
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Fig. 4. The proton-deuteron strong interaction Woods-Saxon potentials VLS(r) at
given orbital angular momentum L and total spin S obtained in a fit [24] of the
low energy phase shifts [16]. In increasing order of the VLS(0), they correspond
to L, S values of 0, 1/2 (blue), 0, 3/2 (orange), 1, 3/2 (red), 1, 1/2 (green), 2, 1/2

(purple) and 2, 3/2 (brown).

spin S = 1
2
and 3

2
, respectively [16] 1.

From the effective range parameters and the fact that a sharp fall down
of the correlation function starts at r0 ≈ 2 fm, one may conclude that the
applicability of Eqs. (92)-(94) requires r0 >

∣∣dS0S∣∣ ∼ 2.5 fm.

7. Proton-deuteron correlation from short-range potentials up to d-waves

The approximate calculation of the proton-deuteron correlation function
based on the integral relation in Eqs. (92)-(94) can be compared with the
exact one, solving Schrodinger equations using available strong interaction
potentials up to d-waves [24], shown in Fig. 4. These potentials were obtained
by fitting the corresponding phase shifts [16].

Note that according to generalised Levinson’s theorem [25], both the s-
wave Doublet and Quartet phase shifts from Ref. [16] start at π at zero
kinetic energy and the corresponding attractive s-wave potentials support
bound states, despite only the Doublet one (3He) is allowed by the Pauli
principle.

In Figs. 5-7, we compare the proton-deuteron phase shifts δLS(k) from [16]
and corresponding effective range functionsMLS calculated according to Eq.
(75) with those following from the potentials.

One observes a rough agreement up to k ∼ 150 MeV/c. Some discrep-
ancies, especially for the Doublet (S=1/2) p-wave, may be related with the

1It appears (see Fig. 4) that the proton-deuteron s-wave strong FSI ranges d at S =1/2
and 3/2 compose 4-5 fm and are somewhat larger than the dS0S-values.
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Fig. 5. The proton-deuteron phase shifts δLS(k) from [16] (dots) and calculated
from the strong interaction Woods-Saxon potential VLS(r) [24] (curves) at orbital
angular momentum L = 0 and total spin S = 1/2 (blue), 3/2 (orange); the corre-
sponding effective range functionsMLS(k) are calculated according to Eq. (75)
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Fig. 7. The same as in Fig. 5 at L = 2 and S = 1/2 (blue), 3/2 (orange)



27

oversimplified Woods-Saxon potential form, missing the pole at k ≈ 75 MeV
in the cotangent of the phase shift and in the corresponding effective range
function. Also, the account of a noticeable inelasticity at k > 60 MeV/c [16]
may be required.

Since the discrepancies are rather moderate for the Quartet waves, respon-
sible for a dominant strong interaction contribution to the proton-deuteron
correlation function, one can use the Woods-Saxon potentials of Ref. [24] for
a realistic description of the latter. In figures 8-10, we compare the strong
interaction contributions ∆RLS to the proton-deuteron correlation function
following from these Woods-Saxon potentials with the approximate ones cal-
culated according to Eqs. (92)-(94) at ε = 1 fm, modified by the substitution
in Eq. (97).

The approximate contributions are quite close or almost coincide with the
exact ones for the s-waves and the Doublet p-wave for both Gaussian radii
r0 = 3 and 4 fm, while for the other waves they are reasonably close to the
latter for r0 = 4 fm only. An excellent agreement of the approximate and
exact calculations for the Quartet s-wave and the Doublet p-wave at r0 = 3
fm is caused by a shorter range of the corresponding potentials (see orange
and green curves in Fig. 4).

We have checked that, at ε < 1 fm, the results of approximate calculations
practically coincide with the exact ones for the s-waves and the Doublet p-
wave. For the Quartet p-wave and the d-waves, the agreement with the exact
calculations is worse. As expected, it is completely destroyed for the d-waves
at ε→ 0 and somewhat improved by increasing ε to make it closer to a given
source radius r0.

One may conclude that for the source radii r0 < 4 fm, the exact calcula-
tion based on realistic proton-deuteron potentials is required for a reasonable
description of the proton-deuteron correlation function. The resulting strong
interaction contribution of the s-, p- and d-waves for r0 = 1.5, 2, 3 and 4 fm is
shown in Fig. 11 and the complete correlation function, taking into account
the Coulomb FSI, in Fig. 12. One may see that the complete correlation
functions at r0 = 2− 4 fm are quite close to each other.

Conclusions

In this paper, a detailed description of the calculation of a two-particle
correlation function at a small relative momentum is given. It is shown
that at a characteristic source radius r0 larger than the range d of the two-
particle strong interaction, the exact calculation using the solutions of the
scattering problem at given strong interaction potentials reduces to the ap-
proximate one based only on the corresponding scattering amplitudes. For
correlations of elementary hadrons, the range of the two-particle strong in-
teraction is about one femtometer and the approximate calculation, taking
into account the s-wave strong interaction only, is reasonably accurate for
sources with the Gaussian radii r0 on a femtometer level or larger [20]. The
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Fig. 8. The strong FSI contributions ∆RLS(k) at given orbital angular momentum
L and the total pair spin S to the proton-deuteron correlation functions calculated
from the strong interaction Woods-Saxon potentials [24] (dots) and according to
Eqs. (92)-(94) modified by the substitution in Eq. (97) with ε = 1 fm (curves) for
r0 = 3 fm (orange) and 4 fm (blue)
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Fig. 9. The same as in Fig. 8 for L = 1
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Fig. 11. The strong FSI contribution ∆Rspd(k) (dots) from the s-, p- and d-waves
to the proton-deuteron correlation function calculated from the strong interaction
Woods-Saxon potentials [24] for r0 = 1.5 fm (red), 2 fm (green), 3 fm (orange) and
4 fm (blue)

calculation becomes more complicated for correlations involving nuclei due
to a larger strong interaction range and a necessity to account for the higher
orbital angular momentum waves for the strong interaction even near the
threshold [24, 26, 27]. Particularly, comparing the approximate calculations
of the proton-deuteron correlation functions with the exact ones, using the
Woods-Saxon strong interaction potentials up to d-waves from Ref. [24], we
have shown that the former are valid for the radii r0 larger than 4 fm only
and that the assumption of a dominant s-wave strong interaction, used in the
analyses of experimental proton-deuteron correlation functions [29,30], is not
justified (see also [26, 27]). The correlation involving nuclei may be further
complicated by their multi-body nature [28,29]. However, for the source radii
r0 larger than those of the involved nuclei, one may expect the simple two-
body approach a valid one [26]. Then, according to Eq. (23), the measured
effective hadron-nucleus source radius squared is expressed through the radii
r0h and r0A of hadron and nucleus sources as r20 = (r20h + r20A)/2. Assuming
the coalescence formation of a nucleus with the atomic number A (requiring
close nucleon emission points in the nucleus rest frame), the corresponding
source radius squared is obviously suppressed by a factor of A as compared
with the nucleon source radius r0N : r20A = r20N/A. In particular, the mea-
sured proton-deuteron radius r0 within the two-body coalescence approach
becomes r0 =

√
3/4r0N [31]. To achieve sufficiently precise description of

the correlation functions involving nuclei, one should model more realistic
strong interaction potentials rather than the single Woods-Saxon ones [24],
a combination of the square wells [26] or the single exponentials [27], de-
scribing the available phase shift data in detail. Particularly, the modelled
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Fig. 12. The same as in Fig. 11 for the complete proton-deuteron correlation
functions Rspd(k), taking into account the Coulomb interaction

proton-deuteron potentials should reproduce the poles in the cotangent of
the Doublet s- and p-wave phase shifts at k ∼ 12 MeV/c [32] 1 and k ∼ 75
MeV/c [16], respectively, as well as the inelasticities. Also, for processes char-
acterised by small source radii, the multi-body effects should be considered.

A. Integral relations

In case of a negligible renormalisation of the amplitudes fα
′α;J

LS due to the
scattering channels different from the channels α′ with the particles belonging
to the same isospin multiplets as the detected particles in the channel α and -
sufficiently far above the threshold (when one can neglect both the difference
in channel momenta and the Coulomb FSI), the inner L-wave multi-channel
correction integral ∆Ĩ reduces to a linear combination of the single-channel
correction integrals ∆ĨT :

∆Ĩ(ε, k) =
∑
T

(
CTt
T1t1;T2t2

)2
∆ĨT (ε, k), (A.1)

1In [33], this pole is however found at a negative centre-of-mass energy of −3 keV.
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where t1, t2 are the projections of the particle isospins T1, T2 in the channel
α and

∆ĨT (ε, k) =
∑

LSJ
2J+1

N(j1,j2)
{2π

k
<
(
∂kf

T ;J
LS + k−1fT ;JLS

)
+ 4π=

(
fT ;J∗LS ∂kf

T ;J
LS

)
+4π
k2

[(
A[CL, SL]− 1

2

)
<fT ;JLS − A[SL, SL]=fT :JLS

]
+2π

k
(A[CL, CL] + A[SL, SL])

∣∣∣fT ;JLS

∣∣∣2 }
=
∑

LSJ
2J+1

N(j1,j2)
2π
k3
{k dδT ;J

LS

dk

−1
2
(−1)L

[
sin 2

(
ρ+ δT ;JLS

)
− sin 2ρ

]
[1 + bL(ρ)]

−ρ−1cL(ρ)
[
cos 2

(
ρ+ δT ;JLS

)
− cos 2ρ

]
},

(A.2)
with the same functions bL, cL as enter in (A.9) and (A.10) representing
polynomials in even powers of ρ−1 up to the power 2(L− 1).

Note that in case of only one channel flavour α′ = α, (90) reduces to

Ĩ(ε, k) = 2π
k3

∑
L(2L+ 1)A[FL, FL] ‘

+
∑

LSJ
2J+1

N(j1,j2)
{2π

k
<
(
∂kf

J
LS + k−1fJLS

)
+ 4π=

(
fJ∗LS∂kf

J
LS

)
+4π
k2

[(
A[GL, FL]− 1

2

)
<fJLS − A[FL, FL]=fJLS

]
+2π

k
(A[GL, GL] + A[FL, FL])

∣∣fJLS∣∣2 }
=
∑

LSJ
2J+1

N(j1,j2)
2π
k3
{(2L+ 1)A[FL, FL] + k

dδJLS
dk

+(A[GL, FL]− 1
2
) sin 2δJLS + (A[GL, GL]− A[FL, FL]) sin2 δJLS},

(A.3)

where the second equality in (A.3) follows from the single channel unitarity
condition, =fJLS = k

∣∣fJLS∣∣2, and the expression of the amplitudes fJLS through
the phase shifts δJLS in (63).

One can further use the recurrence relations for the Coulomb functions
uL = FL(η, ρ) or GL(η, ρ),

L∂ρuL = (L2 + η2)1/2uL−1 − (L2/ρ+ η)uL,

(L+ 1)∂ρuL = [(L+ 1)2/ρ+ η]uL − [(L+ 1)2 + η2]1/2uL+1,
(A.4)

to calculate the derivatives ∂ρuL analytically and thus simplify the numerical
calculation of the functionals Aα′ . Omitting the index α′ and using the
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relation ∂k = r [∂ρ − (η/ρ)∂η] , one arrives at

A[GL, FL] = A[FL, GL] + 1 = ρL
2+η2

L2 (GL−1FL−1 +GLFL)

− (L2 + η2)1/2
(
1 + ρη

L2

)
(GL−1FL +GLFL−1)

− L
(L2+η2)1/2

FLGL−1 + η
L

(
L2

ρ
+ η
)

(GL∂ηFL − FL∂ηGL)

+ η
L

(L2 + η2)1/2(FL∂ηGL−1 −GL−1∂ηFL).

(A.5)

The functionals A[FL, FL] or A[GL, GL] follow from (A.5) by substitutions
GL → FL or FL → GL. Particularly,

A[FL, FL] = ρL
2+η2

L2 (F 2
L−1 + F 2

L)− (L2+η2)[(2L+1)L+2ρη]−Lη2
L2(L2+η2)1/2

FLFL−1

+ η
L

(L2 + η2)1/2(FL∂ηFL−1 − FL−1∂ηFL).

(A.6)

For L = 0, one has to put L = −1, u−1 = u0, u−2 = u1 in the r.h.s. of (A.5),
(A.6). Particularly, 1

A[G0, F0] = ρ(1 + η2)(G0F0 +G1F1)

−(1 + η2)1/2(1 + ρη)(G1F0 +G0F1) + (1 + η2)−1/2F0G1

−η(1
ρ

+ η)(G0∂ηF0 − F0∂ηG0)

−η(1 + η2)1/2(F0∂ηG1 −G1∂ηF0).

(A.7)

In the absence of the Coulomb interaction or sufficiently far above the
threshold, one can make substitutions η → 0, FL → SL, GL → CL and
rewrite (A.5)-(A.7) as

A[uL, vL] = ρ(uL−1vL−1 + uLvL)− L(uL−1vL + uLvL−1)− uL−1vL, (A.8)

where uL, vl = CL(ρ) or SL(ρ). For L = 0, one can now retain L = 0 on
the r.h.s. of (A.8) and put S−1 = C0 and C−1 = −S0. Particularly, for
uL = vL = SL, we have

A[SL, SL] = ρ− 1
2
(−1)L[1 + bL(ρ)] sin 2ρ− ρ−1[aL(ρ) + cL(ρ) cos 2ρ]

= O
(

[e(2L+ 3)−1ρ]
2L+3

)
,

(A.9)
where a0 = b0 = b1 = c0 = 0, a1 = −c1 = 1 and, for L > 1, the functions
aL(ρ), bL(ρ) and cL(ρ) are polynomials in even powers of ρ−1 up to the power

1Putting GL = FL = φl or φ∗l in Eqs. (A.5), (A.6) and (A.7) and dividing them by 2k,
one recovers the results for Il = <A[φ∗l , φl]/(2q) in Eqs. (21) of [22] if corrected by the
substitions lη2 → −lη2 and ∂ηφl → ∂ηφ

∗
l .
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2(L − 1); particularly, a2 = 3 + 3ρ−2, b2 = −12ρ−2 and c2 = 3 − 3ρ−2. The
single-channel equation (A.3) then reduces to

Ĩ(ε, k) = 2π
k3

∑
LSJ

2J+1
N(j1,j2)

{k dδJLS
dk

+ ρ− 1
2
(−1)L[1 + bL(ρ)] sin 2

(
ρ+ δJLS

)
−ρ−1[aL(ρ) + cL(ρ) cos 2

(
ρ+ δJLS

) ]}
= 2π

k3

∑
LSJ

2J+1
N(j1,j2)

[
k
dδJLS
dk

+ ρ− 1
2
(−1)L sin 2(ρ+ δJLS) +

∑L
l=1O

(
ρ−2l+1

)]
,

(A.10)
with the same functions aL, bL, cL as enter in (A.9). 1

Note that in the absence of both the Coulomb and strong FSI, the volume
integral Ĩ(ε, k) recovers the volume of a sphere of the radius ε:

Ĩno FSI(ε, k) = 2π
k3

limn→∞
∑n

L=0(2L+ 1)A[SL, SL]

= 2π
k3

limn→∞

[
2
3
ρ3 +O

(
[e(2n+ 5)−1ρ]

2n+5
)]

= 4
3
πε3.

(A.11)

It should be noted that all the L-contributions to the volume integral
Ĩ(ε, k) diverge at ε→ 0 except for the s-wave one, whose limiting value takes
on the form [8,9]:

Ĩ(0, k)
L=0−−→

∑
S { 2π

kα
[<∂kαfαα;S0S −<fαα;S0S ∂kα (lnAc(ηα)) ]

+ 4π
∑

α′
kα′
kα

[=
(
fα
′α;S∗

0S ∂kαf
α′α;S
0S

)
− ηα′

Ac(ηα′ )
|fα′α;S0S |

2
∂kαh(ηα′)]}

= −4πAc(ηα)[∑α′ |fα
′α;S

c0S |
2
∂k2αM

α′α′;S
0S

+
∑

α′ 6=α 2<
(
fαα;Sc0S fα

′α;S∗
c0S

)
∂k2αM

α′α;S
0S ],

(A.12)
where the matrix 2∂k2M̂S

0S at k = 0 coincides with the matrix of effective
radii d̂S0S. The second equality follows from some matrix algebra and explicit
account of the Coulomb (Gamow) penetration factors, factoring them out of
the amplitudes f̂S0S:

fα
′α′′;S

0S = [Ac(ηα′)Ac(ηα′′)]
1/2 fα

′α′′;S
c0S ; (A.13)

here the s-wave amplitudes

fα
′α′′;S

c0S =

[(
M̂S

0S − ik̂c

)−1]α′α′′
(A.14)

1For L = 0 and 1, the first equality in (A.10) recovers the results of Wigner [12] and
Lüders [23] and, the second one coincides with the large-ρ asymptotics in equation (4)
of [24], provided the latter is corrected for the lost sign factor (−1)L.
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can be considered as the short-range interaction amplitudes affected by the
Coulomb forces mainly through the modification of the channel momenta.

Note that both equalities in (A.12) are still valid with a reasonable accu-
racy, even when truncating the sums over the channel flavours and reducing
correspondingly the dimension of the M̂0-matrix. The latter then becomes
a complex matrix and should be substituted by its real part in the second
expression in (A.12).
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