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•  Physics summary after eight years of LHC 
 
•  The ATLAS experiment, present data taking 
 
•  Physics Highlights  
     * Standard Model measurements 
     * Properties of the Higgs boson 
     * Searches for Physics Beyond the SM  
 
•  Perspectives: detector upgrades and  
                           physics potential  
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The Physics Messages from the LHC 
- a summary from the first 8 years-  

(i)  The Standard Model has been tested at the   
        highest energies 
 
         High LHC intensities (excellent machine and detectors)  
         à rarer and rarer processes are being explored 
 
 
(ii)  A Higgs boson has been discovered (2012) 

       The properties of the discovered Higgs boson are in   
         agreement with the predictions of the Standard Model  

 
(iii)   No Physics Beyond the Standard Model has  
        been discovered (yet)   
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Test of the Standard Model  
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à LHC = Long and Hard Calculations  

Huge progress also on the theoretical side: (N)NLO QCD / el.weak corrections 
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Higgs boson properties 

So far, all measured properties are in agreement with the expectations from the  
Standard Model, however, precision has to be increased 
à access to rare decay modes, higher precision, Higgs boson self-coupling 
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The mission of the LHC for the next decade (HL-LHC) 

(i)  Continue the direct searches for Physics Beyond  
       the Standard Model at the highest energies   
              
           à Address more complex scenarios  
 
(ii)  Exploration of the Higgs sector    

               - Does the discovered Higgs particle have the  
                 properties as predicted in the Standard Model?  
 
              -  Investigation of the Higgs boson self-coupling   
                 à Higgs boson potential 
 
(iii)    Precision Measurements 
 
          -  Precision measurements of Standard Model processes  
             and parameters 
          -  Measurement of rare processes  
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The ATLAS Experiment 

JINR Dubna contributed very significantly to ATLAS, throughout all phases! 
 
(conceptual design, R&D, construction, commissioning, data taking and physics analysis,  
 ... .., Phase-I and Phase-II upgrades)  
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The ATLAS Collaboration   

•  182 Institutions (235 institutes) from 38 Countries  
     
•  ~ 2’900 Scientific Authors  
      ~ 1’900 with PhD, contributing to M&O share  
      ~ 1’200 PhD students  
 
      ~ 5’500 Active members  
         (physicists, PhD + master students, engineers, technicians, ..)  

Argentina
Armenia
Australia
Austria
Azerbaijan
Belarus
Brazil
Canada
Chile
China
Colombia
Czech Republic
Denmark
France
Georgia
Germany
Greece
Israel
Italy
Japan

Morocco
Netherlands
Norway
Poland
Portugal
Romania
Russia
Serbia
Slovakia
Slovenia
South Africa
Spain
Sweden
Switzerland
Taiwan
Turkey
UK
USA
CERN
JINR

ATLAS
Collaboration

ATLAS
Collaboration

http://atlas.cern



  
                       9K. Jakobs,  Colloquium, JINR Dubna,  16th May 2018                                                                                                                         
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1.1% 

USA	 18,7%
Germany		 11,3%
UK	 10,2%
Italy	 9,0%
France	 7,4%
CERN		 5,6%
Japan	 4,1%
Canada	 3,5%
Russia+	JINR	 4,8%
Spain	 2,6%
China	 2,6%
Czech	Republic	 2,1%
Sweden	 1,6%
Israel		 1,6%
Poland	 1,6%
Switzerland	 1,3%
Netherlands	 1,3%
Europe	(others)	 6,0%
Asia	(others)	+	Australia	 2,0%
Latin	America	 1,8%
Africa	 1,1%Fractions according to PhD physicists 

(M&O share)   



  
                       10K. Jakobs,  Colloquium, JINR Dubna,  16th May 2018                                                                                                                         

ATLAS 25  
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Thanks for the excellent work of The ATLAS Outreach Team 

Members from JINR, signing the ATLAS Letter of Intent (1. October 1992)  
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Thanks to JINR for the nice present! 
... and for the highly valued contributions during the past 25 years  
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Data taking during Run 2    
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Excellent performance of the accelerator and of the ATLAS experiment 

In 2017:  
 
Delivered:  50.2 fb-1  
 
Recorded:  46.9 fb-1 

(Data taking efficiency  93.3%) 
 
Good for Physics: 43.6 fb-1 

(Efficiency 93.6%, à high data 
 quality) 
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Data taking during Run 2    

  ATLAS levelling at  µ ~ 58 during 2017   
 
  (about 2.5 times the LHC design pileup value) 
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Start-up of Data Taking in 2018    

•  First collisions with stable beams in 2018 on Tuesday, 17th April around 1 pm 

•  ATLAS had a very smooth startup, after solid preparation and tests of the various 
     sub-detector systems and of the trigger and data acquisition system during the past months     
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Start-up of Data Taking in 2018 (cont.)   

•  LHC has moved very fast up towards the nominal number of bunches (2556); 
    Luminosities around 2 1034 cm-2 s-1 reached; new record: 2.14 1034 cm-2 s-1 

•  Still beam losses observed in Q16L2 region, however, a stable mode of operation  
     found;  β* levelling applied towards the end of fills, to increase luminosity  
 
•  ATLAS is in data-taking mode; smooth start-up;   already  ~10 fb-1 recorded  
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A few Physics Highlights  

A di-jet event recorded during 2017, with mjj = 9.3 TeV   
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Measurement of the W-boson mass 

•  Based on early data (2011) at √s = 7 TeV (4.6 fb-1) 

•  Huge amount of work to understand detector response and the modelling of  
     kinematic quantities  (relies on large Z à ℓℓ  sample)  
 
•  High quality analysis in W à eν and W à µν channels 

arXiv:1701.07240 
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Same precision reached as 
for current best measurement 
from the CDF experiment  

arXiv:1701.07240 

Measurement of the W-boson mass (cont.) 

mW = 80.370  ± 0.019 GeV 
 
                      ±   7 MeV statistical 
                      ± 11 MeV systematic 
                      ± 14 MeV modeling 
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Precision Test of the Standard Model 
-test of quantum corrections-   
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Precision measurement of the Top-quark mass 

mtop = 172.51  ± 0.50 GeV 
                         (0.3%)  
                      ±   270 MeV statistical 
                          ±   420 MeV systematic                 

ATLAS-CONF-2017-071 

Precision reached is significantly higher than expected before LHC data taking! 

mtop = 172.44  ± 0.48 GeV 
                         (0.3%)  
                      ±   130 MeV statistical 
                          ±   470 MeV systematic                 

ATLAS CMS 
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•  Evidence for Zt production [4.2σ (5.4σ expected)] 

•  Top pole mass measured comparing lepton 
differential distributions from 8 TeV Run-1 data   
with NLO QCD fixed-order predictions (MCFM) 

•  Measurement of tt differential cross-sections of 
highly boosted top quarks 

JHEP 01 (2018) 126 

arXiv:1801.02052 
Eur. Phys. C77 (2017) 804 

Other recent highlights on Top-Quark Physics  
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Higgs Boson Physics 
-profile of the new particle-  

•  Status of bosonic decay modes  

•  Measurements / evidence for couplings  
    to fermions ( H à ττ, H à bb, ttH production) 
 
•  Mass    (“input parameter”) 
 
•  Production rates  
     
•  Couplings to bosons and fermions 
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Higgs Boson Production  
           
          Gluon fusion  
 
 
 
          Vector boson  
          fusion 
 
 
 
 
           WH/ZH  
           associated 
           production 
 
 
          tt associated  
          production  *) LHC Higgs cross-section working group 

   Large theory effort 

VBF 

Meanwhile the NNNLO = N3LO calculation for the gluon-fusion process exists;  
B. Anastasiou et al. (2015)  
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Results of the Searches for H à γγ and H à ZZ* à 4l   

 
•  Impressive signals in these high-resolution bosonic decay channels 
     (Data collected during 2015 and 2016 in Run 2 at 13 TeV) 
  
•  Observation with a significance of > 5σ in each channel  

arXiv:1802.04146 (2018) JHEP 03 (2018) 095 
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Categorisation of H à γγ candidate events    

 
     - VH enriched: one-lepton, ET

miss, low-mass di-jets 
     - VBF enriched (tag-jet configuration, Δη, mjj) 
     - gluon fusion: exploit different mass resolution for  
                            for different detector regions, 
                            γγ conversion status and pTt  

     Categorisation: to increase overall sensitivity and  
     sensitivity to different production modes (VBF, VH) 
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H à γγ signals for various categories  

a)  untagged categories 
      (expected to be dominated by  
         gluon fusion) 
   
b)  VBF categories  
 
c)   VH categories 
 
d)    ttH categories  

arXiv:1802.04146 (2018) 
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H à γγ signal strengths  
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•  Data are well described by theoretical calculations (within large uncertainties)  
 
•  Such measurements will become important ingredients for future measurements 
     of Higgs boson parameters (Effective Field Theories)  

ATLAS-CONF-2018-002 
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H à WW* à ℓν ℓν signal 

•  Very significant excesses visible in the “transverse mass” (ATLAS) 
     and mℓℓ distributions (CMS)  

VBF-tagged 

•  Large branching fraction, however, also severe backgrounds  
     (no mass peak, due to neutrinos)  
•  à Rely on lepton/jet kinematics   (à transverse mass MT, di-lepton invariant mass mll, θll)  

0

200

400

600
800

1000

1200

1400

1600
1800

2000

Ev
en

ts
 / 

10
 G

eV  Data
 Uncertainty
WW 
VV 

 Mis-Id
*γZ/ 

/Wttt 
 Higgs

ATLAS Preliminary
 1≤ jetN, νµνe→WW*→H

-1 = 13 TeV, 36.1 fbs

50 100 150 200 250
 [GeV]Tm

0

100

200

300

D
at

a-
Bk

g.

ggF:  6.3 σ
(exp: 5.2σ)

ATLAS-CONF-2018-004  



  
                       31K. Jakobs,  Colloquium, JINR Dubna,  16th May 2018                                                                                                                         

H à WW* à ℓν ℓν signal 
•  Due to the large rates, this channel is also well suited to extract precise  
      measurements of the VBF and gluon-fusion components: 

CMS 

ATLAS-CONF-2018-004  

ATLAS 



  
                       32K. Jakobs,  Colloquium, JINR Dubna,  16th May 2018                                                                                                                         

Couplings to quarks and leptons ?  
•  Search for H à ττ  and  H à bb decays;  

•  Challenging signatures due to jets (bb decays)  
     or significant fraction of hadronic tau decays  
 
•  Vector boson fusion mode essential for H à ττ decays  

 

•  Associated production WH, ZH modes  
     have to be used for H à bb decays 
 
 
 
 
•  Exploitation of multivariate analyses  
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The Higgs Sector: Coupling to Fermions H-> ττ

•  Search for H à ττ with  τ 
decaying in eµ, µth, eth and thth 

•  Largest background from Zà ττ 
and hadronic multijet events 

•  Search in categories aiming at 
ggH and VBF production 

Observation of H à ττ
µ= 1.09	± 0.26	
	
 Significance: 4.9σ 
 
(5.9σ for combination 
          of 13 & 7-8 TeV) 



  
                       34K. Jakobs,  Colloquium, JINR Dubna,  16th May 2018                                                                                                                         

Search for H à bb decays  
•  Hàbb mode dominates Higgs decays (BR~58%) 

•  Most sensitive channel exploits VH, Hàbb (V=W/Z) 
•  Combined ATLAS+CMS significance 2.6σ  
      (3.7σ expected) from LHC Run-1 
 

•  Combination of Z and W final states characterised 
by lepton multiplicity: 

       (2-lepton (Z→ℓℓ), 1-lepton (W→ℓv), and 
        0-lepton (Z→vv) ) 

Combination of result with ATLAS Run-1 gives  
3.6σσ observed (4.0σσ expected) 
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arXiv:1712.08891, Phys. Rev. D97 (2018) 072003 

-  Combination of all channels leads to  4.2σ observed  (3.8σ expected)   (Phys. Rev. D97 (2018) 072003) 

     In addition, Run-1 sensitivity of           2.7σ observed (1.8σ expected)    (JHEP08 (2016) 045) 
 
-  Measured production and decay rates consistent with SM expectation 

-  Update is planned soon to establish the ttH signal with high sensitivity  

Evidence for ttH production 
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Higgs boson mass  

PRL 114 (2015) 191803  

ATLAS + CMS:  (Run 1) 
 
mH = 125.09 ± 0.21 (stat) ± 0.11 (syst)  GeV 
 
Precision of 0.2%      

-  Statistical uncertainty still dominant 

-  Major systematic uncertainties: Lepton  
     and photon energy scales and resolutions 
 
-  Theoretical uncertainties small (correlated), 
     γγ interference effects neglected  

Combined results: Uncertainties: 

Updated Run-2 results: 

Updated CMS mass measurement is 12%  
more precise than Run-1 ATLAS+ CMS  
combination,  using only H à ZZ* à 4l  

The two high resolution channels H à ZZ*à 4ℓ and H à γγ are 
best suited (reconstructed mass peak, good mass resolution) 
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Higgs boson production 

~11% 

~41% 

~27% 

~51% 

~26% 

~9% 

CMS Combination of Run-2 results 

Updated combined results are expected  
for complete Run-2 dataset 
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      Physics Beyond the Standard Model       
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Hitoshi Murayama, IPMU Tokyo & Berkeley 
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Supersymmetry       

Important motivation: 
-  Supersymmetry provides a candidate for dark matter                                        
-  Unification of couplings of the three interactions seems  
     possible  
-  Quadratically divergent quantum corrections are cancelled 

χ

Energy         (GeV) 
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Results on the Search for Supersymmetry 
 
•    Example: search for squark and gluino production 

•  Data are in agreement with predictions from  
    background from Standard Model processes 
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transverse energy (HT) seen in the event 

SUSY contribution would  
show up here 
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Results on the Search for Supersymmetry (Run 1) 
 
     à Exclusion limits are set on masses of these particles 
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however:  
-  Mass limits depend on assumptions on mχ    (LSP)  
-  So far, simple decay scenarios investigated (not most general search)  
-  Mass limits for third generation squarks are weaker   
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              Search for Supersymmetry 
   -Important new results with complete Run-2 dataset-  

Data well described by expectations 
from SM processes   

Gluino mass limit beyond 2 TeV,  m(χ0) = 0 

ATLAS-CONF-2017-022 
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The special role of top squarks (stops) 

•  The partners of the top (bottom) quarks might be the lightest squarks,  
     whereas all other squarks might be too heavy to be produced at the LHC;  
 
•  Light stops could solve the so-called “hierarchy” problem  
     (cancellation of large quantum corrections to the Higgs boson mass)  
     “Natural SUSY”  
 
•  Production of stops and sbottoms is significantly weaker at the LHC 

 
 
 
•  They might appear in gluino decays or via direct production (smaller rates)  

σσ  (pb) 

ΜΜ  (GeV) 
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Results on dedicated searches for stop quarks 

•  Weaker mass limits for partners of the top quark (lower production rate, tt background) 

•  However, significant progress, with mass limits ~1 TeV (light neutralinos),  
     including coverage for complex decay scenarios 
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Is SUSY dead ?    
•  “Under attack from all sides, but not dead yet.”     

•  Some of the simplest models are ruled out, however,  
     interpretations rely on many simplifying assumptions.  
 
•  Plausible “natural” scenarios still not ruled out;  
         - RPV scenarios have fewer constraints.  
 
         - Search for electroweak SUSY production                            à higher luminosity required 
         - Addressing more difficult corners of phase space 
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Model ℓ, γ Jets† Emiss
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ADD GKK + g/q 0 e, µ 1 − 4 j Yes 36.1 n = 2 ATLAS-CONF-2017-0607.75 TeVMD

ADD non-resonant γγ 2 γ − − 36.7 n = 3 HLZ NLO CERN-EP-2017-1328.6 TeVMS

ADD QBH − 2 j − 37.0 n = 6 1703.092178.9 TeVMth

ADD BH high
∑
pT ≥ 1 e, µ ≥ 2 j − 3.2 n = 6, MD = 3 TeV, rot BH 1606.022658.2 TeVMth

ADD BH multijet − ≥ 3 j − 3.6 n = 6, MD = 3 TeV, rot BH 1512.025869.55 TeVMth

RS1 GKK → γγ 2 γ − − 36.7 k/MPl = 0.1 CERN-EP-2017-1324.1 TeVGKK mass

Bulk RS GKK →WW → qqℓν 1 e, µ 1 J Yes 36.1 k/MPl = 1.0 ATLAS-CONF-2017-0511.75 TeVGKK mass

2UED / RPP 1 e, µ ≥ 2 b, ≥ 3 j Yes 13.2 Tier (1,1), B(A(1,1) → tt) = 1 ATLAS-CONF-2016-1041.6 TeVKK mass

SSM Z ′ → ℓℓ 2 e, µ − − 36.1 ATLAS-CONF-2017-0274.5 TeVZ′ mass

SSM Z ′ → ττ 2 τ − − 36.1 ATLAS-CONF-2017-0502.4 TeVZ′ mass
Leptophobic Z ′ → bb − 2 b − 3.2 1603.087911.5 TeVZ′ mass
Leptophobic Z ′ → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 3.2 Γ/m = 3% ATLAS-CONF-2016-0142.0 TeVZ′ mass

SSM W ′ → ℓν 1 e, µ − Yes 36.1 1706.047865.1 TeVW′ mass
HVT V ′ →WV → qqqq model B 0 e, µ 2 J − 36.7 gV = 3 CERN-EP-2017-1473.5 TeVV′ mass
HVT V ′ →WH/ZH model B multi-channel 36.1 gV = 3 ATLAS-CONF-2017-0552.93 TeVV′ mass
LRSM W ′

R → tb 1 e, µ 2 b, 0-1 j Yes 20.3 1410.41031.92 TeVW′ mass
LRSM W ′

R → tb 0 e, µ ≥ 1 b, 1 J − 20.3 1408.08861.76 TeVW′ mass

CI qqqq − 2 j − 37.0 η−LL 1703.0921721.8 TeVΛ

CI ℓℓqq 2 e, µ − − 36.1 η−LL ATLAS-CONF-2017-02740.1 TeVΛ

CI uutt 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 20.3 |CRR | = 1 1504.046054.9 TeVΛ

Axial-vector mediator (Dirac DM) 0 e, µ 1 − 4 j Yes 36.1 gq=0.25, gχ=1.0, m(χ) < 400 GeV ATLAS-CONF-2017-0601.5 TeVmmed

Vector mediator (Dirac DM) 0 e, µ, 1 γ ≤ 1 j Yes 36.1 gq=0.25, gχ=1.0, m(χ) < 480 GeV 1704.038481.2 TeVmmed

VVχχ EFT (Dirac DM) 0 e, µ 1 J, ≤ 1 j Yes 3.2 m(χ) < 150 GeV 1608.02372700 GeVM
∗

Scalar LQ 1st gen 2 e ≥ 2 j − 3.2 β = 1 1605.060351.1 TeVLQ mass

Scalar LQ 2nd gen 2 µ ≥ 2 j − 3.2 β = 1 1605.060351.05 TeVLQ mass

Scalar LQ 3rd gen 1 e, µ ≥1 b, ≥3 j Yes 20.3 β = 0 1508.04735640 GeVLQ mass

VLQ TT → Ht + X 0 or 1 e, µ ≥ 2 b, ≥ 3 j Yes 13.2 B(T → Ht) = 1 ATLAS-CONF-2016-1041.2 TeVT mass

VLQ TT → Zt + X 1 e, µ ≥ 1 b, ≥ 3 j Yes 36.1 B(T → Zt) = 1 1705.107511.16 TeVT mass

VLQ TT →Wb + X 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 36.1 B(T →Wb) = 1 CERN-EP-2017-0941.35 TeVT mass

VLQ BB → Hb + X 1 e, µ ≥ 2 b, ≥ 3 j Yes 20.3 B(B → Hb) = 1 1505.04306700 GeVB mass

VLQ BB → Zb + X 2/≥3 e, µ ≥2/≥1 b − 20.3 B(B → Zb) = 1 1409.5500790 GeVB mass

VLQ BB →Wt + X 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 36.1 B(B →Wt) = 1 CERN-EP-2017-0941.25 TeVB mass
VLQ QQ →WqWq 1 e, µ ≥ 4 j Yes 20.3 1509.04261690 GeVQ mass

Excited quark q∗ → qg − 2 j − 37.0 only u∗ and d∗, Λ = m(q∗) 1703.091276.0 TeVq∗ mass

Excited quark q∗ → qγ 1 γ 1 j − 36.7 only u∗ and d∗, Λ = m(q∗) CERN-EP-2017-1485.3 TeVq∗ mass

Excited quark b∗ → bg − 1 b, 1 j − 13.3 ATLAS-CONF-2016-0602.3 TeVb∗ mass
Excited quark b∗ →Wt 1 or 2 e, µ 1 b, 2-0 j Yes 20.3 fg = fL = fR = 1 1510.026641.5 TeVb∗ mass
Excited lepton ℓ∗ 3 e, µ − − 20.3 Λ = 3.0 TeV 1411.29213.0 TeVℓ

∗ mass
Excited lepton ν∗ 3 e,µ, τ − − 20.3 Λ = 1.6 TeV 1411.29211.6 TeVν

∗ mass

LRSM Majorana ν 2 e, µ 2 j − 20.3 m(WR ) = 2.4 TeV, no mixing 1506.060202.0 TeVN0 mass
Higgs triplet H±± → ℓℓ 2,3,4 e,µ (SS) − − 36.1 DY production ATLAS-CONF-2017-053870 GeVH±± mass
Higgs triplet H±± → ℓτ 3 e,µ, τ − − 20.3 DY production, B(H±±

L
→ ℓτ) = 1 1411.2921400 GeVH±± mass

Monotop (non-res prod) 1 e, µ 1 b Yes 20.3 anon−res = 0.2 1410.5404657 GeVspin-1 invisible particle mass

Multi-charged particles − − − 20.3 DY production, |q| = 5e 1504.04188785 GeVmulti-charged particle mass

Magnetic monopoles − − − 7.0 DY production, |g | = 1gD , spin 1/2 1509.080591.34 TeVmonopole mass

Mass scale [TeV]10−1 1 10
√

s = 8 TeV
√

s = 13 TeV

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits
Status: July 2017

ATLAS Preliminary∫
L dt = (3.2 – 37.0) fb−1

√
s = 8, 13 TeV

*Only a selection of the available mass limits on new states or phenomena is shown.
†Small-radius (large-radius) jets are denoted by the letter j (J).
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Search for new phenomena in di-jet events  

•  First publication on complete Run-2 (2015+2016) dataset:  37.0 fb-1  at √s = 13 TeV  

•  95% CL exclusion limits:  Excited quarks    mq* > 6.0 TeV      (5.8 TeV exp.) 
                                              Add. gauge bosons:   mW’ > 3.6 TeV      (3.7 TeV exp.) 
                                             Quantum Black Holes:   mBH > 8.9 TeV     (8.9 TeV exp.)  
                                             Contact Interactions:         Λ > 13.1 TeV  (ηLL = +1)  
                         Λ > 21.8 TeV  (ηLL = -1)  

arXiv:1703.09127 
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Search for di-lepton resonances 
•  Search is based on complete Run-2 (2015+2016) dataset:  36.1 fb-1  at √s = 13 TeV  

arXiv:1707.02424 

•  No significant deviations from the Standard Model expectations observed 
     à resulting lower mass limits, e.g. m(Z’SSM) > 4.5 TeV (95% C.L.) 
          significant improvement w.r.t. Run 1 (due to higher energy) 
•  In addition: no indication of contact interactions, energy scale Λℓℓqq > 23.5 - 40.1 TeV   
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- Mono-jet 
- Mono-photon 
- Mono-W or mono-Z  
- Mono Higgs (H à bb) 
- Mono-top 

Example: mono-jet search, ET
miss spectrum 

Data are in good agreement with the expectations from Standard Model 
processes  
 
(applies to all mono-X searches)  
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Interpretation on searches for Dark Matter: 

JHEP 01 (2018) 126 JHEP 01 (2018) 126 

95% CL exclusion contours in the  
(m(ZA) – m(χ))-plane (axial vector) 

Comparison of the inferred limits (black line) to  
the constraints from direct detection experiments  
(purple line) on the spin-dependent WIMP–proton  
scattering cross section in the context of the  
simplified model with axial-vector couplings 
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The Phase-I and Phase-II 
Detector Upgrades 
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LHC Schedule 

Phase-I upgrades to be installed by end of LS2,  i.e. end of 2020 
•  Parts already installed  (LS1) or coming during Run 2 (FTK) 
•  Larger parts to come in LS2  (NSW, LAr electronics, L1 Calo, L1 Muon, and FELIX) 
•  14 TeV running after LS2 (in Run 3) 
 
Phase-II upgrades for installation in LS3 in 2024-2026 
•  Technical Design Reports written for all upgrade projects and approved ! 
•  Next steps: define Memoranda of Understanding for construction, finalize R&D  
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LHC Challenges and Luminosities  

 
Increase of the integrated luminosity is  
required to reach rare processes,  
e.g. Higgs boson self-coupling, and to  
explore higher mass ranges 
 
 
Instantaneous luminosity:  
2 �1034 cm-2 s-1  à   7.5 �1034 cm-2 s-1 

 
Number of pile-up events per bunch crossing:   ~60  à  ~200  
 
 
à  Detector Upgrades needed  
 
     Major components:        (i)     Inner Tracking Detectors  
                                           (ii)     Trigger System (and Data Acquisition)  
                                           (iii)    Electronics on all sub-detector systems 

87 fb-1 

220 fb-1 

3000 fb-1 
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ATLAS Phase-II Upgrade 

New Inner Tracking Detector 
(all silicon tracker, up to |η| =4) 

New muon chambers  
in the inner barrel region  

Upgraded Trigger and  
Data Acquisition System: 
 
- L0: 1 MHz  
- Improved High-Level 
  Trigger 
 

Electronics Upgrade : 
 
-  LAr Calorimeter 
-  Tile Calorimeter 
-  Muon system   

Options:  
-    High granularity timing detector  
     (forward region) 
-  High-η muon tagger  
-  Forward detectors, incl. luminosity 
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Major Physics Prospects  

•   Precise measurements of Higgs boson profile  
      (rare, interesting decay modes, test of more exotic models, e.g. composite Higgs, 
       Higgs self coupling, …) 
 
•  Extend the searches for New Physics in all possible directions, cover more complex  
     scenarios, … + …  look for the unexpected ! 

ATL-PUB-2013-014 ATL-PUB-2013-011 
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Conclusions 
•  The LHC and the experiments (ATLAS, CMS, LHCb, and ALICE)  
     challenge the validity of the Standard Model at the high-energy frontier  
     with ever increasing precision  
 
     - Performance of the LHC and the experiments is superb  
 
     - So far the Standard Model has survived all attacks 
          * No evidence for Physics Beyond the Standard Model (yet) 
          *  Within measurement uncertainties the Higgs boson seem to have  
              the properties as expected in the Standard Model  
          *  LHC has entered the precision era (mW, mt, ...) and will address 
             rarer and rarer processes  
 
•  In order to exploit the full potential of the LHC, massive upgrades are  
     needed for the accelerators and the experiments  
 
     .. . to reach new territory and hopefully ground-breaking discoveries       


