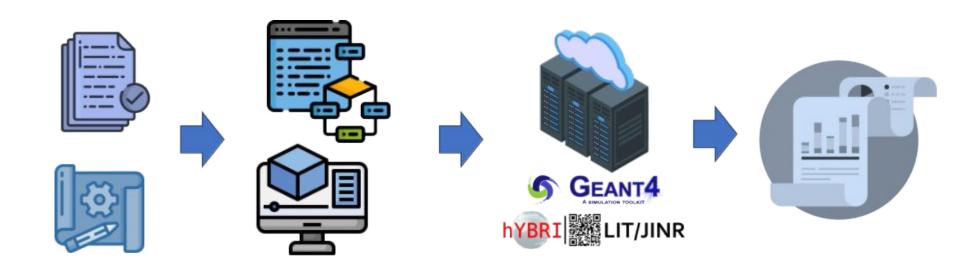
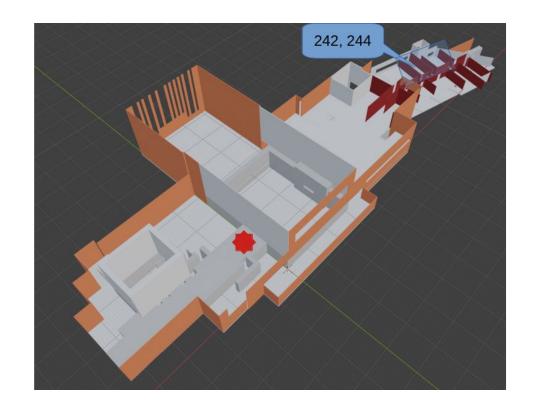
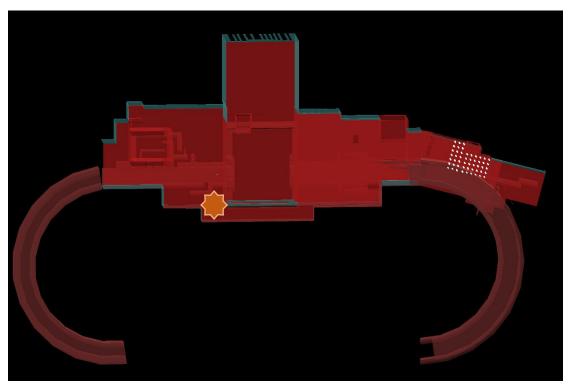


Monte Carlo simulation in Geant4 for complex models on the Govorun supercomputer


Chizhov Konstantin, PhD senior researcher

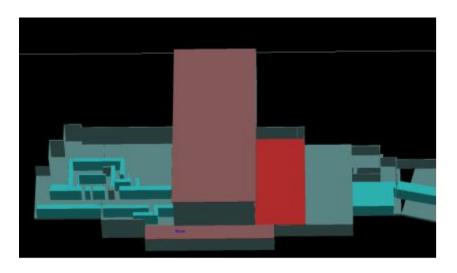
Joint Institute for Nuclear Research, Meshcheryakov Laboratory of Information Technologies, Dubna, Russia

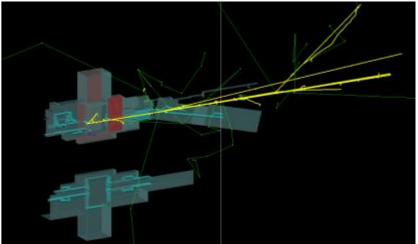

Task overview


- 1. Obtain source data (maps, diagrams, materials) for constructing the geometry.
- 2. Construct the geometry in CAD systems.
- 3. Create a geometry converter from CAD to the Geant4 format.
- 4. Determine the main radiation sources and the radiation type.
- 5. Prepare the Geant4 code for supercomputer calculations.
- 6. Optimize the calculations.
- 5. Evaluate the spectra in the selected rooms.

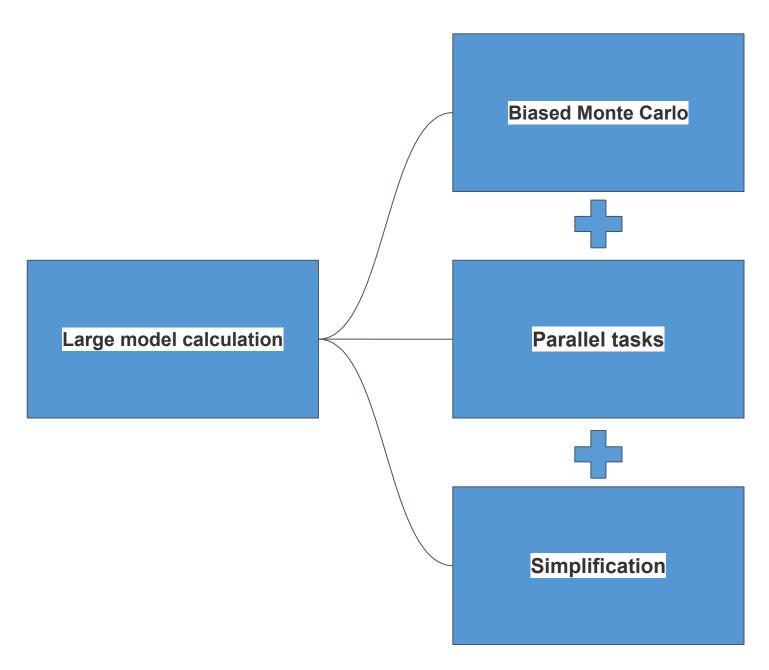
Main sources and detectors

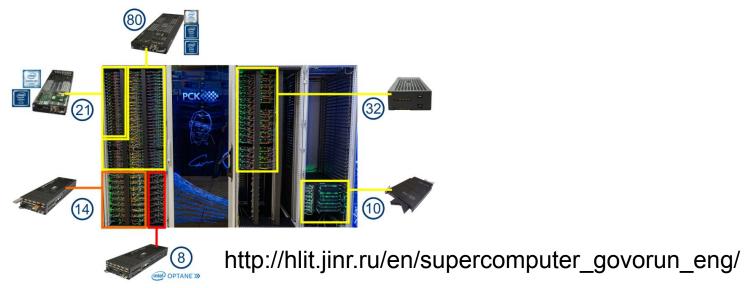
calculation for one source: a collimator.





NICA model in Geant4, white dots indicates detectors in the Temporary control room.


Geant4 GUI


```
G4Box* plate = new G4Box("LeadPlate", 10*cm, 10*cm, 5*cm);
G4LogicalVolume* platelv =
new G4LogicalVolume(plate, Lead, "LeadPlate");
new G4PVPlacement(0, G4ThreeVector(0.,0.,0.),
platelv, "LeadPlate",
worldlv, false, 0, checkOverlaps);
G4double density = 2.700*g/cm3;
G4double a = 26.98*g/mole;
G4Material* AI = new G4Material(name="Aluminum",a, z=13.);
```

Task optimization

Calculations

- Calculations were done in the "Govorun" supercomputer of the Multifunctional information and computing complex, Mescheryakov Laboratory of Information Technologies (JINR).
- Calculations for large geometry required selection of the optimal number of CPUs (Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz) and allocated memory.
- Sofware version and physics list: Geant4 v.4-11.2.2, FTFP_BERT_HP.
- The Slurm Workload Manager was used to manage tasks.
- The spectrum calculation was done in two stages:
 - 1. A neutron spectrum was generated from a ion beam striking a steel-copper collimator, accounting for scattering from concrete walls. Time for calculations = 24 hours.
 - 2. A flat source with the spectrum obtained in the 1st stage, 6x12 m in size, normal directed to the TCR. Time for calculations = 180 hours.

Preparation

You need to build the executive files.

You can run several independent calculations and then sum up the results.

mkdir build01 cd build01 cmake .. make -j2

mkdir build02 cd build02 cmake .. make -j2

<...>

SLURM

Access to "Govorun" is not available by default, ask for access (module add GVR/v1.0-1). Example for *cascade* partition:

#!/bin/bash

#SBATCH -p cascade

#SBATCH -n 80 # Number of CPU

#SBATCH --mem-per-cpu=28G # memory #SBATCH -t 30-00:00:0 # days-hours

module add CMake/v3.29.2 module add gcc/v11.2.0 module add openmpi/v4.1.1_gcc1120 module add **GEANT4/v11.1.3_gcc1120-mt** module add ROOT/v6-18-00

SLURM - Optimizing Memory Usage

If your program consumes a lot of memory, it's best to limit the number of tasks per node.

Parameters:

- -n (--ntasks) total number of tasks
- -N (--nodes) number of nodes
- --tasks-per-node tasks per node
- -c (--cpus-per-task) cores per task

/tmp/slurmd/job9203092/slurm script: line 33: 266558 Killed

./ddxTask ./run-new.mac

slurmstepd: error: Detected 1 oom-kill event(s) in step 9203092.batch cgroup. Some of your processes may have been killed by the cgroup **out-of-memory handler**.

Geant4 main.cc

```
NumberOfThreads = 2 * NumberOfCores
```

```
#ifdef G4MULTITHREADED
#include "G4MTRunManager.hh"
#else
#include "G4RunManager.hh"
#endif
                                                          #SBATCH -n 80
int main(int argc, char **argv) {
#ifdef G4MULTITHREADED
G4int nThreads = 160;
 runManager->SetNumberOfThreads(nThreads);
#else
 G4RunManager * runManager = new G4RunManager;
#endif
#ifdef G4MULTITHREADED
G4MTRunManager * runManager = new G4MTRunManager;
 runManager->SetNumberOfThreads (G4Threading::G4GetNumberOfCores()2);
#else
 G4RunManager * runManager = new G4RunManager;
#endif
 G4cout << " Number of CPU used: " << G4Threading::G4GetNumberOfCores();
```

indicates the number of processes (MPI tasks), not threads

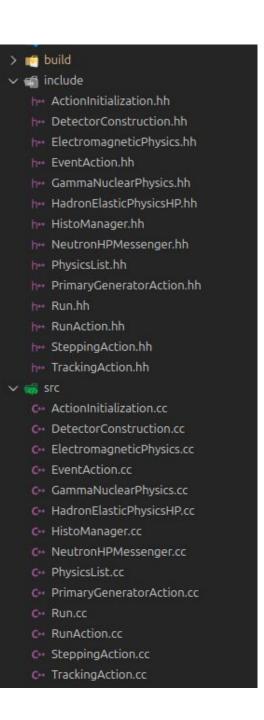
run.mac

use "./" If you use a separate file with initial spectrum

/run/initialize

/control/verbose 1 /run/verbose 1 /process/list

/gps/verbose 0


/gps/particle neutron

#enegy spectrum after the wall of collimator with reflection of orther walls

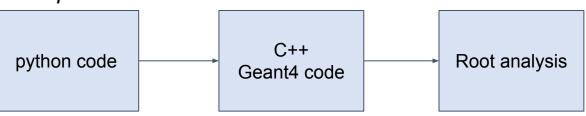
/gps/ene/type Arb /gps/hist/file ./Energyspectrum.dat /gps/hist/inter Log

<...>

/run/printProgress 10000 /run/beamOn 100000000 #1E8

SLURM

Commands for terminal


- module avail check available modules
- sinfo view information about Slurm nodes and partitions.
- sbatch script.sh
- squeue view information about jobs located in the Slurm scheduling queue
- scancel <jobid> kill the task

Batch script: Automatization for several tasks

```
for ((i=1; i \le 6; i++))
do
  source .venv/bin/activate
  python3 gpsmaker.py &
  deactivate
  if [ -d "build" ]
  then
     rm -r build
  mkdir build
  cd build
  cmake ..
  make -j2
  # Run for different particles and energies:
  sbatch ../slurmcalc.sh --wait
  until [ -f result3RS_n.ascii ]
  do
         sleep 5
  done
  cp "result3RS_n.ascii" "../result3RS/Result_n_"$i".ascii"
  echo "file copied - result3RS_n.ascii"
  cd ..
done
```

example:

SLURM output

n01p001

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian

CPU(s): 288

On-line CPU(s) list: 0-287 Thread(s) per core: 4

total used free shared buff/cache available

Mem: 94G 9.6G 78G 114M 5.8G 83G

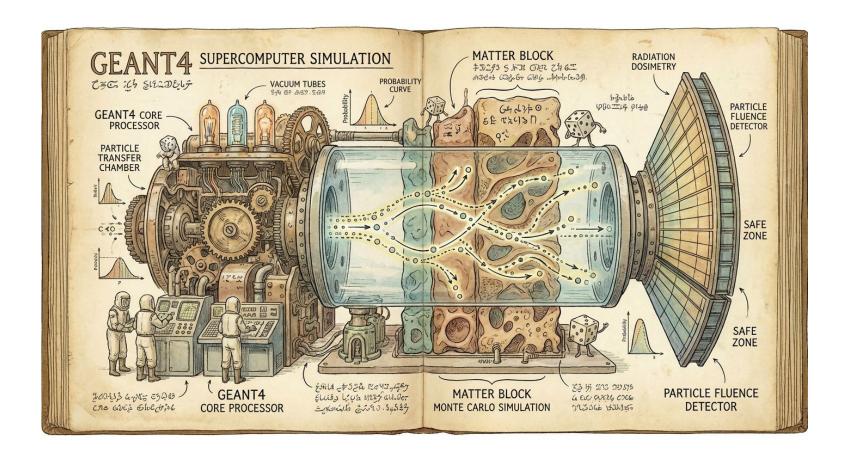
Swap: 4.0G 1.2G 2.8G

Geant4 version Name: geant4-11-01-patch-03 [MT] (10-November-2023)

<< in Multi-threaded mode >>

Copyright : Geant4 Collaboration

References: NIM A 506 (2003), 250-303


: IEEE-TNS 53 (2006), 270-278 : NIM A 835 (2016), 186-225

WWW : http://geant4.org/

Conclusions

- First, test on a local computer.
- Run the finished code on the server via SLURM.
- 3. Automate repetitive steps using batch scripts.
- 4. Read logs and fix erros.
- 5. Run again.

Thank you!

kchizhov@jinr.ru

References

1. Chizhov K et al. Monte-carlo simulation of the radiation environment in the temporary control room at the NICA Accelerator Complex, 16th Vietnam Conference on Nuclear Science and Technology (VINANST-16), Da Nang, Vietnam, October 8th – 10th, 2025.