## Исследование двойного бета распада на спектрометрах TGV-2 и Obelix

TGV-2







Н.И.Рухадзе Дубна 2018

#### **Double beta decay**

#### two-neutrinos double beta decay (2νββ)







#### neutrinoless double beta decay (0νββ) $(Z-2,A) \rightarrow (Z,A)+2e^{-1}$ $(\theta v \beta^{-} \beta^{-})$ $(Z+2,A) \rightarrow (Z,A)+2e^+$ $(\theta v \beta^+ \beta^+)$ $e^{-}+(Z+2,A) \rightarrow (Z,A)+e^{+}$ $(0v\beta^{+}/EC)$ $2e^{-}+(Z+2,A) \rightarrow (Z,A)^* \rightarrow (Z-2,A)+(\gamma)+2X$ (0vEC/EC) $(T_{\frac{1}{2}}^{0v})^{-1} = G^{0v}(Q,Z) |M^{0v}|^2 |m_{\beta\beta}|^2$ 30 $T_{1/2}^{0v} \gtrsim 10^{24}$ years 2.0-90 <sub>9</sub> 10 × 10 20 1.5 0.90 1.00 1.10 K\_/Q 1.0-0.5 -0.0-0.2 0.4 0.6 0.8 1.0 0.0 K\_/Q



Feynman diagram for 0vββ

#### SEARCH FOR DOUBLE BETA DECAY

At present  $2\nu 2\beta$  decay was detected in 11 nuclei:

<sup>48</sup>Ca, <sup>76</sup>Ge, <sup>82</sup>Se, <sup>96</sup>Zr, <sup>100</sup>Mo, <sup>116</sup>Cd, <sup>128</sup>Te, <sup>130</sup>Te, <sup>136</sup>Xe, <sup>150</sup>Nd, <sup>238</sup>U

2vEC/EC in <sup>130</sup>Ba was detected in geochemical experiment (A.P.Meshik et al., Phys. Rev. C 64, 2001, 035205) and there is the indication on 2vEC/EC in <sup>78</sup>Kr (Yu.M.Gavrilyuk et al., Phys. Rev. C 87, 2013, 035501).

**Double beta decay to excited states** of daughter nuclei are accompanied by emission of  $\gamma$ -quanta in de-excitation of excited states. These  $\gamma$ -quanta may be detected by low background HPGe detectors with high efficiency and good energy resolution.

 $2v2\beta^{-}$  decay to excited states was detected in <sup>100</sup>Mo - <sup>100</sup>Ru (0+<sub>1</sub>, 1130.3 keV) and <sup>150</sup>Nd - <sup>150</sup>Sm (0+<sub>1</sub>, 740.4 keV).

| DOUE                             | BLE BETA DECAY OF <sup>106</sup> Cd E                                                        | xperimental signature (TGV-2)       |
|----------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------|
| EC/EC 20                         | $e_b$ - + $^{106}Cd \rightarrow ^{106}Pd$ + ( $2v_e$ ) + ( $\gamma$ )                        | 2KXPd (+γ for e.s.)                 |
| <mark>β+/EC e</mark> b           | $r$ + <sup>106</sup> Cd $\rightarrow$ <sup>106</sup> Pd + e+ + (2 $\nu_{e}$ ) + ( $\gamma$ ) | <b>KXPd + 2γ 511 (+</b> γ for e.s.) |
| <mark>β+β+</mark> <sup>106</sup> | $Cd \rightarrow {}^{106}Pd + e^+ + e^+ + (2v_e) + (\gamma)$                                  | <b>4γ 511 (+</b> γ for e.s.)        |

# $\begin{array}{l} \textbf{0vEC/EC DECAY to the ground state} \\ 2e_b^- + (A,Z) \rightarrow (A,Z-2) + 2X + (\gamma_{brem}, 2\gamma, e^+e^-, e_{-int}) \\ E\gamma,.. = \Delta M - \epsilon_{e1} - \epsilon_{e2} \\ \end{array}$ Suppression factor is ~ 10<sup>4</sup> (in comparison with EC $\beta$ +(0v)) – M. Doi and T. Kotani, Prog. Theor. Phys. 89 (1993)139.

**0vEC/EC** Resonance Transitions  $(A,Z) \rightarrow (A,Z-2)^{*HH'}$ 



J. Bernabeu, A. DeRujula, C. Jarlskog, Nucl. Phys. B 223, 15 (1983)

Enhancement factor on the level of 10<sup>4</sup>-10<sup>6</sup> may be obtained for **Q-Q'res** < 1 keV Z. Sujkowski, S. Wycech, Phys. Rev. C 70 (2004) 052501.



#### Experiment TGV-2 (DOUBLE BETA DECAY OF <sup>106</sup>Cd)



JINR Dubna, Russia, IEAP, CTU Prague, Czech Republic, CU Bratislava, Slovakia, CSNSM Orsay, France LSM Modane, France









Laboratoire Souterrain de Modane, France

- Phase I ~10g (12 samples) of <sup>106</sup>Cd (75%) and ~3.2 g (4 samples) of Cd-nat. T= 8687h (Feb.2005 –Feb.2006)
- Phase II ~ 13.6 g (16 samples) of <sup>106</sup>Cd (75%) T = 12900h (Dec.2007 – July 2009)
- Background I no samples (Aug.2009 Mar.2010)
- Background II 16 samples of Cd.-nat (April 2010 Nov. 2013)
- Phase III ~ 23.2 g (16 samples) of <sup>106</sup>Cd (99.57%) (Feb.2014 – Sep.2015, Apr.2016 – ....) T>25000h

#### Phase II, 13.6g of <sup>106</sup>Cd, T=12900h





#### **Background suppression**

#### Passive shielding

- Modane Underground Laboratory
- Pb + Cu
- airtight box against radon
- anti-neutron shielding (borated polyethylene)

#### Construction

- Radiopure materials
- Minimization of amount of construction materials

#### • Electronics

- telescopic construction (double coincidences from neighboring detectors)
- double-shaping selection of low energy events



#### **PASSIVE SHIELDING**





#### Laboratoire Souterrain de Modane

Fréjus Tunnel at the French-Italian border Depth - 1800 m of rock (4800 mwe)



Depth (m.w.e)



Fréjus road tunnel Fréjus road tunnel Fréjus road tunnel FRANCE Altitude 1 228 m Distance 0 m Fréjus road tunnel FRANCE Core 6 210 m 12 868 m

Muons flux - 4 muons / m<sup>2</sup> x day<sup>-1</sup> (2x10<sup>6</sup> reduction factor) Neutrons flux - 3000 neutrons(fast) /m<sup>2</sup> x day<sup>-1</sup> (1000 reduction factor)



#### Блок-схема электронной части TGV-2



#### Preparation of <sup>106</sup>Cd foiles (Dubna, October 2013)







![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_5.jpeg)

![](_page_13_Picture_6.jpeg)

16 circle foils: thickness =  $70\pm10 \text{ mg/cm}^2$ diameter = 52 mmmass = 23.166 genrichment= 99.57%.

![](_page_14_Figure_0.jpeg)

#### **Detectors and foils of TGV-2**

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_4.jpeg)

16 circle foils: thickness =  $70\pm10 \text{ mg/cm}^2$ diameter = 52 mmmass = 23.166 genrichment= 99.57%.

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_16_Figure_1.jpeg)

#### Одиночные события в фазе 2 и фазе 3

![](_page_17_Figure_1.jpeg)

#### Single, Double and Double+KXPd energy spectra of TGV-2

![](_page_18_Figure_1.jpeg)

#### 1D (left) and 2D (right) TGV-2 analysis methods

![](_page_19_Figure_1.jpeg)

*In 1D fit approach*, a signal in the 19–22 keV energy window was required in one detector, while a signal from another face-to-face neighbor detector was collected in a 1D-histogram. The final accumulated spectrum was fitted with a 1D-model which included the KXPd multiplet as signal, and the Cadmium KX-ray (KXCd) multiplet with linear underlay as background. The energy window boundaries, 19 and 22 keV, were selected as a compromise between signal efficiency and background reduction of KXCd-rays generated by any charged particle crossing the source foils. *In 2D fit approach*, the double coincidence events from neighboring face-to-face detectors, both in the 16–30 keV energy range, were collected in a 2Dhistogram. The final 2D-spectrum was fitted by a 2D-model consisting of the 2D-Gaussian KXPd multiplet as signal, and the KXCd 2D-Gaussian multiplet together with the 2D-background slope as background.

#### 2vEC/EC decay of <sup>106</sup>Cd

![](_page_20_Figure_1.jpeg)

Preliminary:  $2.0 \times 10^{20} \text{ y} < T_{1/2} (2vEC/EC) > 3.5 \times 10^{21} \text{ y}$ 

#### Last TGV-2 results on double beta decay of <sup>106</sup>Cd

| Decay mode           | <b>Final level</b>                     | T <sub>1/2</sub> , y (90%CL) | T <sub>1/2</sub> , y (90%CL)                        |
|----------------------|----------------------------------------|------------------------------|-----------------------------------------------------|
|                      | of <sup>106</sup> Pd                   | Phase II*                    | Phase III                                           |
| <b>2vEC/EC</b>       | 0+g.s.                                 | $4.2 \times 10^{20}$         | $2.0 \times 10^{20} < T_{1/2} > 3.5 \times 10^{21}$ |
|                      |                                        |                              | preliminary                                         |
|                      | 2+, 511.9 keV                          | $1.2 \times 10^{20}$         | $1.7 \times 10^{20}$                                |
|                      | 0 <sup>+</sup> <sub>1</sub> , 1134 keV | $1.0 \times 10^{20}$         | $1.5 	imes 10^{20}$                                 |
| 0vEC/EC              | 2717.6 keV                             | $1.6 \times 10^{20}$         | $1.4 \times 10^{20}$                                |
| 0v <i>EC/EC</i>      | 4+, 2741 keV                           | $1.8 \times 10^{20}$         | 0.9×10 <sup>20</sup>                                |
| $2\nu\beta^+/EC$     | 0+g.s.                                 | $1.1 \times 10^{20}$         | $3.0 \times 10^{20}$                                |
|                      | 2+, 511.9 keV                          | $1.1 \times 10^{20}$         | $3.0 \times 10^{20}$                                |
|                      | 0+ <sub>1</sub> , 1134 keV             | $1.6 \times 10^{20}$         | $4.5 \times 10^{20}$                                |
| $2\nu\beta^+\beta^+$ | 0+g.s.                                 | $1.4 \times 10^{20}$         | $3.9 \times 10^{20}$                                |
|                      | 2+, 511.9 keV                          | $1.7 \times 10^{20}$         | $4.7 \times 10^{20}$                                |

 $T_{1/2}$ theor. (2v*EC*/*EC*) ~ 10<sup>20</sup> - 10<sup>22</sup>

\*N.I.Rukhadze et al., Journal of Physics: Conference Series 375 (2012) 042020

#### **TGV-2 on the new place**

![](_page_22_Picture_1.jpeg)

#### **TGV-2** on the new place

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

#### **Detector Obelix\***

P type coaxial HPGe detector Canberra in U-type ultra low background cryostat located at LSM, France (4800 m w.e.) Sensitive volume 600 cm<sup>3</sup> ~160% Efficiency Peak / Compton 83

- *Energy resolution* ~1.2 keV at 122 keV (<sup>57</sup>Co),
  - ~2 keV at 1332 keV (60Co)

Distance from cap 4 mm Entrance window AI, 1.6 mm

JINR Dubna, Russia, IEAP, CTU Prague, Czech Republic, LSM Modane, France

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

~12 cm arch. Pb

~20 cm low active Pb

**Radon free** air

![](_page_24_Picture_12.jpeg)

\*JINST 12 (2017) P02004.

#### **Background of the Obelix spectrometer**

![](_page_25_Figure_1.jpeg)

2017 - 95 counts/ kg·d (after the detector was repaired by Canberra)

#### **Configurations of the Obelix passive shielding**

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

PbI ~ 12 cm of archeological lead (activity of < 60 mBq/kg) (~7 cm can be removed) PbII ~ 20 cm of low-active lead (activity of 5 - 20 Bq/kg)

![](_page_26_Figure_4.jpeg)

#### Efficiencies of the Obelix for some geometries

![](_page_26_Figure_6.jpeg)

![](_page_27_Figure_0.jpeg)

#### Double beta decay to the excited states

#### **Motivations:**

- Nuclear spectroscopy (to know decay scheme of nuclei)
- NME problem NME(g.s.)  $\approx$  NME( $0_1^+$ )
- $2\nu\beta\beta(0^+ \rightarrow 0^+_1)$  decay (one has a very nice signature for the decay)

#### Experimental search can be distinguish by 2 approaches:

- With gamma spectroscopy using HPGe detector (observations of <sup>100</sup>Mo and <sup>150</sup>Nd have been accomplished)
- Secondary analysis in large scale  $\beta\beta$  decay experiments (<sup>100</sup>Mo in NEMO-3)

<sup>100</sup>Mo - <sup>100</sup>Ru (0+1, 1130.3 keV) decay was detected in several experiments, including measurements performed at LSM, Modane with the Obelix HPGe spectrometer
 (R. Arnold et al. Nucl. Phys. A 925 (2014) 25)

| $T_{1/2}[y]$                                            | Ν                  | S/B          | Year | Method |
|---------------------------------------------------------|--------------------|--------------|------|--------|
| $6.1^{+1.8}_{-1.1}$ (stat.) × 10 <sup>20</sup>          | 133 <sup>(a)</sup> | <b>~</b> 1/7 | 1995 | HPGe   |
| $9.3^{+2.8}_{-1.7}(stat.) \pm 1.4(sys.) \times 10^{20}$ | 153 <sup>(a)</sup> | <b>~</b> 1/4 | 1999 | HPGe   |
| $6.0^{+1.9}_{-1.1}(stat.) \pm 0.6(sys.) \times 10^{20}$ | 19.5               | 8/1          | 2001 | 2×HPGe |
| $5.7^{+1.3}_{-0.9}(stat.) \pm 0.8(sys.) \times 10^{20}$ | 37.5               | 3/1          | 2007 | NEMO-3 |
| $5.5^{+1.2}_{-0.8}(stat.) \pm 0.7(sys.) \times 10^{20}$ | 35.5               | 8/1          | 2009 | 2×HPGe |
| $6.9^{+1.0}_{-0.8}(stat.) \pm 0.7(sys.) \times 10^{20}$ | 597 <sup>(a)</sup> | 1/10         | 2010 | 4×HPGe |
| $7.5 \pm 0.6(stat.) \pm 0.6(sys.) \times 10^{20}$       | 239 <sup>(a)</sup> | 2/1          | 2013 | OBELIX |

Present "positive" results on  $2\nu\beta\beta$  decay of <sup>100</sup>Mo to the O<sub>1</sub><sup>+</sup> excited state of <sup>100</sup>Ru.

N is the number of useful events; S/B is the signal-to-background ratio.

a) Sum of two peaks

#### Investigation of 2vββ decay of <sup>100</sup>Mo-<sup>100</sup>Ru to excited states

![](_page_29_Figure_1.jpeg)

 $T_{1/2} (0^{+}_{1}, 1130.3 \text{ keV}) = [7.5 \pm 0.6(\text{stat.}) \pm 0.6(\text{sys.})] \times 10^{20} \text{ yr} (90 \% \text{ CL})$ *R. Arnold et al., Nuclear Physics A*925 (2014) 25

#### Measurement of <sup>100</sup>Mo at ARMONIA experiment

18120 h

![](_page_30_Figure_2.jpeg)

P. Belli et al., NPA 846 (2010) 143

 $6.\,9^{+1.0}_{-0.8}(stat.\,)\pm0.\,7(sys.\,)\times10^{20}$ 

#### **Double beta decay of 58Ni**

![](_page_31_Figure_1.jpeg)

#### Measurement of <sup>58</sup>Ni

Sample of natural nickel with a mass of ~21.7 kg, containing ~68% of <sup>58</sup>Ni

> Run 1 - 2014 15.10.2014-11.11.2014  $T_1=652.4$  h 14.11.2014- 08.12.2014  $T_2=488.5$  h T=1141 h= 47.5 d

Run 2 - 2015 28.08.2015 - 17.09.2015 T = 456 h = 19 d

Run 3 - 2017 07.04.2017 - 12.10.2017 T= 3452 h = **143.8 d** 

![](_page_32_Figure_5.jpeg)

Theoretical prediction:  $T_{1/2}(2v\beta^+EC, 0^+ \rightarrow 0^+) = 8.6 \times 10^{25} \text{ y}$   $T_{1/2}(2vEC/EC, 0^+ \rightarrow 0^+) = 6.1 \times 10^{24} \text{ y}$  $T_{1/2}(0vEC/EC \text{ radiative}) = 2 \times 10^{35} - 3 \times 10^{36} \text{ y}$ 

 $\begin{array}{l} \label{eq:stingenergy} \hline Existing experimental limits: \\ T_{1/2} \left( 2\nu\beta^+EC, 0^+ {\rightarrow} 0^+ \right) > 7.0 \times 10^{20} \ y \ (68\% CL) \\ T_{1/2} \left( 2\nu\beta^+EC, 0^+ {\rightarrow} 2_1^+ \right) > 4.0 \times 10^{20} \ y \ (68\% CL) \\ T_{1/2} \left( 2\nu EC/EC, 0^+ {\rightarrow} 2_1^+ \right) > 4.0 \times 10^{19} \ y \ (90\% CL) \\ T_{1/2} \left( 2\nu EC/EC, 0^+ {\rightarrow} 2_2^+ \right) > 4.0 \times 10^{19} \ y \ (90\% CL) \\ T_{1/2} \left( 0\nu EC/EC \ radiative \right) > 2.1 \times 10^{21} \ y \ (90\% CL) \end{array}$ 

#### Measurement of <sup>58</sup>Ni

![](_page_33_Picture_1.jpeg)

![](_page_34_Figure_0.jpeg)

#### Measurement of <sup>58</sup>Ni

Sample: natural Ni (~68% of <sup>58</sup>Ni) Total mass: ~21.7 kg The investigations of double beta decay (β<sup>+</sup>EC, EC/EC) Regions of interest: 511 keV, 811 keV, 864 keV, 1675 keV, 1918 keV

```
<sup>56</sup>Co (T_{1/2} = 77.3 \text{ d})

<sup>57</sup>Co (T_{1/2} = 271.8 \text{ d})

<sup>58</sup>Co (T_{1/2} = 70.9 \text{ d})

<sup>54</sup>Mn (T_{1/2} = 312.3 \text{d})
```

#### Background measurement with Obelix in 2017

![](_page_35_Figure_1.jpeg)

Counting rate [30 – 2900 keV] 95 counts/day•kg

#### Measurement of <sup>58</sup>Ni at 2017 (third run)

![](_page_36_Figure_1.jpeg)

#### OBELIX: <sup>58</sup>Ni: 2014 vs 2017 measurements

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

#### **Results for double beta decay of <sup>58</sup>Ni obtained with the Obelix detector**

| Decay mode | Final state<br>or Decay<br>transition | T <sub>1/2</sub> , (90% CL) | <b>Previous limits, T</b> <sub>1/2</sub> |
|------------|---------------------------------------|-----------------------------|------------------------------------------|
| β+ΕC       | g.s.                                  | 1.7×10 <sup>22</sup> y      | 7.0×10 <sup>20</sup> y (68%CL)*          |
| β+ΕC       | 811 keV                               | 2.3×10 <sup>22</sup> y      | 4.0×10 <sup>20</sup> y (68%CL)*          |
| EC/EC      | 811 keV                               | 3.3×10 <sup>22</sup> y      | 4.0×10 <sup>19</sup> y (90%CL)**         |
| EC/EC      | 1675 keV                              | 3.4×10 <sup>22</sup> y      | 4.0×10 <sup>19</sup> y (90%CL)**         |
| 0vEC/EC    | Radiative                             |                             |                                          |
| resonant   | 1918 keV                              | 4.1×10 <sup>22</sup> y      | 2.1×10 <sup>21</sup> y (90%CL)***        |

\*S.I. Vasil'ev et al., JETP Lett. 57 (1993) 631. \*\*E. Bellotti et al., Lett. Nuovo Cim. 33 (1982) 273. \*\*\*B. Lehnert et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 065201

#### **Future plans of measurements with Obelix**

Investigations of double beta decay of <sup>74</sup>Se, <sup>82</sup>Se, <sup>96</sup>Zr and <sup>150</sup>Nd to excited states of daughter nucley will be performed with detectors Obelix and Idefix (new P type coaxial ultra low-background HPGe detector similar to Obelix). Idefix was produced by company of Mirion (Canberra) in 2017.

![](_page_40_Figure_2.jpeg)

#### Idefix – new HPGe detector at Modane Underground Laboratory (LSM)

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

## 22.11.2017 Idefix detector was delivered in LSMSensitive volume606 cm³Peak / Compton102Energy resolution~ 0.95 keV at 122 keV (<sup>57</sup>Co),<br/>~ 2.05 keV at 1 332 keV (<sup>60</sup>Co)

Distance from cap Entrance window Relative efficiency

6 mm Al, 1.6 mm 165%

Passive shielding for Idefix detector will be produced in 2018

#### Background of the Idefix detector without shielding

![](_page_41_Figure_9.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

## Location in the lab

• At the place of tgv room and germanium small room (imagine circles instead of

![](_page_43_Figure_2.jpeg)

## Thank you for attention

## Additional slides

![](_page_46_Figure_0.jpeg)

#### Neutrinoless double electron capture (resonance transitions) (A,Z)→(A,Z-2)\*<sup>HH'</sup>

#### J. Bernabeu, A. DeRujula, C. Jarlskog, Nucl. Phys. B 223, 15 (1983)

transitions, abundance, daughter nuclear excitation, atomic vacancies and figure of merit of some isotopes [10]

| <br>$Z \rightarrow Z - 2$                                         | Z-natural<br>abundance in % | Nuclear excitation $E^*$ (in MeV), $J^P$           | Atomic vacancies<br>H, H' | Figure of merit $Q - E$ (in keV) |
|-------------------------------------------------------------------|-----------------------------|----------------------------------------------------|---------------------------|----------------------------------|
| <sup>74</sup> <sub>34</sub> Se → <sup>74</sup> <sub>32</sub> Ge   | 0.87                        | 1.204 (2+)                                         | 2S(P), 2S(P)              | 2 ± 3                            |
| <sup>78</sup> <sub>36</sub> Kr → <sup>78</sup> <sub>34</sub> Se   | 0.36                        | 2.839 (2 <sup>+</sup> )<br>2.864 (?)               | 1 <b>S</b> , 1 <b>S</b>   | $\frac{19}{-6} \pm 10$           |
| $^{102}_{46}Pd \rightarrow ^{102}_{44}Ru$                         | 1                           | 1.103 (2 <sup>+</sup> )<br>1.107 (4 <sup>+</sup> ) | 1S, 1S                    | $\frac{29}{25} \pm 9$            |
| <sup>106</sup> 48Cd -→ <sup>106</sup> 46Pd                        | 1.25                        | 2.741 (?)                                          | 1 <b>S</b> , 1 <b>S</b>   | $-8 \pm 10$                      |
| $^{112}_{50}$ Sn $\rightarrow ^{112}_{48}$ Cd                     | 1.01                        | 1.871 (0+)                                         | 15, 15                    | $-3 \pm 10$                      |
| <sup>130</sup> <sub>56</sub> Ba → <sup>130</sup> <sub>54</sub> Xe | 0.11                        | 2.502 (?)<br>2.544 (?)                             | 1S, 1S<br>1S, 2S(P)       | $\frac{8}{-6} \pm 13$            |
| <sup>152</sup> <sub>64</sub> Gd → <sup>152</sup> <sub>62</sub> Sm | 0.20                        | 0 (0+)                                             | 15, 25                    | $4\pm4$                          |
| <sup>162</sup> <sub>68</sub> Er → <sup>162</sup> <sub>66</sub> Dy | 0.14                        | 1.783 (2+)                                         | 15, 25                    | $1 \pm 6$                        |
| $^{164}_{68}\text{Er} \rightarrow {}^{164}_{66}\text{Dy}$         | 1.56                        | 0 (0+)                                             | 25, 25                    | $9\pm 5$                         |
| $^{168}_{70}$ Yb $\rightarrow {}^{168}_{68}$ Er                   | 0.14                        | 1.355 (1 <sup>-</sup> )<br>1.393 (?)               | 15, 25<br>25, 25          | $\frac{1}{8} \pm 4$              |
| $^{180}_{~74}W \rightarrow ^{180}_{~72}Hf$                        | 0.13                        | 0 (0 <sup>+</sup> )<br>0.093 (2 <sup>+</sup> )     | 15, 15<br>15, 35          | $\frac{26}{-4} \pm 17$           |
| $^{196}_{80}$ Hg $\rightarrow ^{186}_{78}$ Pt                     | 0.15                        | 0.689 (2+)                                         | 15, 25                    | 26 ± 9                           |

#### <sup>106</sup>Pd levels before 2008

Table of Isotopes, Eighth Edition, Ed. Richard B. Firestone

#### <sup>106</sup>Pd levels from 2008

Nuclear Data Sheets 109 (2008) 943 D. De Frenne and A. Negret

| E <sub>level</sub> (keV) | Jπ     | Eγ(keV)                      | E <sub>level</sub> (keV) | Jπ   | Eγ(keV)                            |
|--------------------------|--------|------------------------------|--------------------------|------|------------------------------------|
| 2748.2(4)                | 2,3-   | γ2236.3→γ511.85              | 2748.2(4)                | 2,3- | γ <b>2236.3</b> →γ511.85           |
| 2746(5)                  | 4+     | ?                            |                          |      |                                    |
| 2741.0(5)                | (1,2+) | γ2741 <b>(2229.5+511.85)</b> | 2741.0(5)                | 4+   | γ <mark>2741(2229.5+511.85)</mark> |
|                          |        |                              | 2737                     | ?    | ?                                  |
| 2717.56(21)              | ?      | γ <b>1159.9</b> →γ1557.7     | 2717.56(21)              | ?    | γ1159.9→γ1557.7                    |

Phase III - Search for  $0_V EC/EC$  decay of  $^{106}Cd \rightarrow Obelix$  det.

#### T=19333 h

![](_page_48_Figure_1.jpeg)

#### Calculation of the limit for <sup>58</sup>Ni

 $T_{1/2}^{LIM} > In(2) \times \epsilon \times M_{TOT} \times O(^{58}Ni) \times T_{EXP} \times N_A / A / N_{EXCL}$ 

- • $\epsilon$  detection efficiency,
- •O enrichment of isotop
- •M<sub>TOT</sub> mass of sample(s),
- •T<sub>EXP</sub> -time of measurement
- $\ensuremath{\cdot} N_{\text{EXCL}}\ensuremath{\cdot}$  the number of excluded signal events

| Использованные в расчетах параметры |          |  |  |  |
|-------------------------------------|----------|--|--|--|
| Параметр                            | Величина |  |  |  |
| NA/10^20                            | 6022.142 |  |  |  |
| M <sub>тот</sub> г                  | 21754    |  |  |  |
| O( <sup>58</sup> Ni)                | 68.27%   |  |  |  |
| Α                                   | 58       |  |  |  |

K.Zuber

http://wwwarchive.ph.ed.ac.uk/sussp61/lectures/05\_Zuber\_Ne utrinolessDoubleBetaDecay/StAndrews\_2006\_lect2\_orig.ppt

![](_page_50_Picture_0.jpeg)

Simulation was performed using ROOT-VMC-GEANT4 DPGE package in the energy region of 0.05- 5 MeV.

#### Calculated efficiency

#### **DPGe: efficiency of Nickel source**

![](_page_50_Figure_4.jpeg)

#### Measurement of La powder at Marinelli backer

![](_page_51_Figure_1.jpeg)

#### Efficiencies of OBELIX detector for some "standard" geometries of measurement

DPGe eff.,

5.5

5

4.5

![](_page_52_Figure_1.jpeg)

3.5 2.5200 400 600 800 1000 1600 **Obtained efficiencies are in a good** agreement with MC simulations (for example the measurement with bobbin). Measured sample was specially prepared in the same geometry like investigated sample of <sup>100</sup>Mo.

**-** *Exp*.

🗕 Sim. I

🔫 Sim. II

<sup>138</sup>La

1200

1400

Gamma energy, keV

Sim. III

To obtain the detector efficiency an original method using special low-active samples with known mass and activity was developed. Based on results obtained in measurements of La<sub>2</sub>O<sub>3</sub> and standard sources of <sup>152</sup>Eu and <sup>133</sup>Ba, efficiency curves for measurements of double beta emitters in several "standard" geometries were obtained.

#### Preliminary results

|          | 1           |            |                             |                                   |
|----------|-------------|------------|-----------------------------|-----------------------------------|
| Energy   | Efficiency  | Nexcl      | T <sub>1/2</sub> , (90% CL) | <b>Previous limits</b>            |
|          | Kb+         | (811 keV)  |                             |                                   |
| 811 keV  | 1.0%        | 18.0       | 2.3×10 <sup>22</sup> y      | 4.0×10 <sup>20</sup> y (68%CL)*   |
|          | Kb          |            |                             |                                   |
| 511 keV  | 2.9%        | 69.5       | 1.7×10 <sup>22</sup> y      | 7.0×10 <sup>20</sup> y (68%CL)*   |
|          | <b>KK</b> ( | (811 keV)  |                             |                                   |
| 811 keV  | 1.4%        | 18.0       | 3.3×10 <sup>22</sup> y      | 4.0×10 <sup>19</sup> y (90%CL)**  |
|          | 0vKK-resoi  | nant (1918 | keV)                        |                                   |
| 1918 keV | 1.2%        | 12.3       | 5.1×10 <sup>22</sup> y      | 2.1×10 <sup>21</sup> y (90%CL)*** |
|          | KK (1       |            |                             |                                   |
| 864 keV  | 1.0%        | 19.4       | 2.2×10 <sup>22</sup> y      |                                   |
| 1675 keV | 1.3%        | 16.2       | 3.4×10 <sup>22</sup> y      | 4.0×10 <sup>19</sup> y (90%CL)**  |

\*S.I. Vasil'ev et al., JETP Lett. 57 (1993) 631.

\*\*E. Bellotti et al., Lett. Nuovo Cim. 33 (1982) 273.

\*\*\*B. Lehnert et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 065201

#### Cosmogenic isotopes in 2017

![](_page_54_Figure_1.jpeg)

#### 511 keV (2017) HPGe spectrum: fit

![](_page_55_Figure_1.jpeg)

N<sub>EXCL</sub>=69.5 events

#### **Background studies**

![](_page_56_Figure_1.jpeg)

![](_page_57_Picture_0.jpeg)

![](_page_57_Picture_1.jpeg)

![](_page_57_Picture_2.jpeg)

![](_page_57_Picture_3.jpeg)

Copper sample 22.3+35.4 kg

#### Se-nat.

![](_page_58_Picture_1.jpeg)

#### **Measurement of scintillator for SuperNEMO**

- Scintillator was produced by ENVINET for NRPI and IEAP
- The sample was prepared by the request of NRPI in the form of 3L Marinelli with the mass of 4500 g
- The scintillator was measured in May 2014 with the OBELIX spectrometer

![](_page_59_Figure_4.jpeg)

![](_page_59_Figure_5.jpeg)

Results (in comparison with the similar scintillator measured by Bordeux group)

![](_page_60_Picture_1.jpeg)

![](_page_60_Picture_2.jpeg)

| HPGe<br>( LSM)     | Sample                                       | Mas<br>s<br>g | Time<br>h | 40K<br>mBq/kg | 238U<br>mBq/kg | 214Bi<br>mBq/k<br>g | 208Tl<br>mBq/kg |
|--------------------|----------------------------------------------|---------------|-----------|---------------|----------------|---------------------|-----------------|
| OBELIX<br>(IEAP)   | Scintillator<br>in the shape<br>of Marinelli | 4500          | 325       | 20.6          | 1.8            | < 0.14              | < 0.09          |
| IRIS<br>(Bordeaux) | Scintillator<br>In the shape<br>of Marinelli | 3300          | 742       | <3.4          | 3.5            | < 0.45              | < 0.15          |

#### Ge detectors at LSM

| Detector | Туре | Volume | Total and peak background rate (counts/day) |         |         |          |
|----------|------|--------|---------------------------------------------|---------|---------|----------|
|          |      |        | 40-2700 keV                                 | 352 keV | 583 keV | 1461 keV |
| MONDEUSE | well | 220 cc | 770                                         | 4.2     | 2.7     | 5        |
| ROUSSETE | well | 430 cc | 692                                         | 4.1     | 2.9     | 7.2      |
| ABYMES   | well | 980 cc | 828                                         | 5.6     | 5.6     | 5.6      |
| XXL      | well | 844 cc | 821                                         | 6.8     | <1.8    | 11.6     |
| HERMINE  | N    | 197 cc | 313                                         | 1.2     | 1.5     | 2.3      |
| HELLAZ   | Р    | 204 cc | 515                                         | 4.5     | 0.5     | 1.4      |
| JASMIN   | Р    | 380 cc | 529                                         | 2.0     | 1.41    | 1.71     |
| GENTIANE | N    | 215 cc | 178                                         | < 0.21  | 0.38    | 0.65     |
| IRIS     | Р    | 400 cc | 282                                         | 1.02    | 1.46    | 3.01     |

**TABLE 1.** Half-lives (in years) of  $2vEC/EC(0^+ \rightarrow 0^+, \text{ g.s.})$  of <sup>106</sup>Cd calculated using different values of axial coupling ( $g_A$ ) and nuclear models: special unitary group (SU); standard, renormalized (R), and selfconsistent (S, with small (s.b.) and large (1.b.) basis of single particle states) quasiparticle random phase approaches (QRPA) with standard and adjusted (A) Woods Saxon single particle energies (WS); projected Hartre-Fock-Bogoliubov model (PHFB); single state dominance hypothesis (SSDH).

| Theory              |                     |              |      |  |  |  |
|---------------------|---------------------|--------------|------|--|--|--|
| $T_{1/2}^{2v}$      | ÆCEC                | Method       | Ref. |  |  |  |
| $g_{\rm A} = 1.0$   | $g_{\rm A} = 1.25$  |              |      |  |  |  |
| $4.2 \cdot 10^{21}$ | $1.7 \cdot 10^{21}$ | SU(4)        | [11] |  |  |  |
| $2.5 \cdot 10^{22}$ | $9.7 \cdot 10^{21}$ | PHFB         | [7]  |  |  |  |
| $2.2 \cdot 10^{21}$ | $8.7 \cdot 10^{20}$ | QRPA         | [12] |  |  |  |
| $1.5 \cdot 10^{20}$ | $6.1 \cdot 10^{19}$ | QRPA         | [13] |  |  |  |
| $2.3 \cdot 10^{20}$ | $9.0 \cdot 10^{19}$ | QRPA (WS)    | [14] |  |  |  |
| $2.6 \cdot 10^{20}$ | $1.1 \cdot 10^{20}$ | QRPA (AWS)   | [14] |  |  |  |
| $5.5 \cdot 10^{21}$ | $2.3 \cdot 10^{21}$ | QRPA (WS)    | [15] |  |  |  |
| $3.0 \cdot 10^{20}$ | $1.2 \cdot 10^{20}$ | QRPA (AWS)   | [13] |  |  |  |
| $5.3 \cdot 10^{20}$ | $2.1 \cdot 10^{20}$ | RQRPA (WS)   | [17] |  |  |  |
| $5.1 \cdot 10^{20}$ | $2.0 \cdot 10^{20}$ | RQRPA (AWS)  | [10] |  |  |  |
| $5.0 \cdot 10^{20}$ | $2.0 \cdot 10^{20}$ | SQRPA (s.b.) | [17] |  |  |  |
| $6.6 \cdot 10^{20}$ | $2.6 \cdot 10^{20}$ | SQRPA (l.b.) | [17] |  |  |  |

- 7. A. Shukla, P.K. Raina, R. Chandra, P.K. Rath, J.G. Hirsch, Eur. Phys. J. A 23, (2005) 235.
- 11. O.A. Rumyantsev, M.H. Uhrin, Phys. Lett. B 443 (1998) 51.
- 12. M. Hirsch, K. Muto, T. Oda, H.V. Klapdor-Kleingrothaus, Z. Phys. A 347 (1994) 151.
- 13. J. Suhonen, Phys. Rev. C 48, (1993) 574.
- 14. A.S. Barabash et. al., Nucl. Phys. A 604, (1996) 115-128.
- 15. J. Suhonen, O. Civitarese, Phys. Lett. B 497, (2001) 221-227.
- 16. J. Toivanen, J. Suhonen, Phys. Rev. C 55 (1997) 2314.
- 17. S. Stoica, H.V. Klapdor-Kleingrothaus, Eur. J. Phys. A 17 (2003) 529.

#### <sup>150</sup>Nd. Transition to the **0**<sup>+</sup> excited state

![](_page_63_Figure_1.jpeg)

![](_page_63_Figure_2.jpeg)

<sup>7</sup>9 (2004) 10; PRC 79 (2009) 045501)

![](_page_63_Figure_4.jpeg)

(JETP. Lett. 7

### **67-643<sub>025</sub>(Stat) = 0.07(Syst)[-1025 yr** )14) 055501)

![](_page_63_Figure_7.jpeg)

erage value: 1.2+0.3 0.2-1.020 yr

From presentation of A.Barabash (MEDEX'17)

![](_page_63_Picture_10.jpeg)

#### *Half-life for 0νββ:*

![](_page_64_Figure_1.jpeg)