

Intel optimized TensorFlow

Дубна, Сентябрь 2018

Agenda

- Introduction to deep learning:
 - Models boost
 - Neural networks introduction
- Practice:
 - Non-optimized TensorFlow training
 - Tuning MKL parameters in optimized TensorFow
 - Performance comparison

Deep Learning Use Cases

Cloud Service Providers

Financial Services

Healthcare

Automotive

- Personal assistant
- Image & Video recognition/tagging
- Natural language processing
- Automatic Speech recognition
- Targeted Ads

- Fraud / face detection
- Gaming, check processing
- Computer server monitoring
- Financial forecasting and prediction
- Network intrusion detection
- Recommender Systems

Neural networks for image recognition:

Classification:

Object detection:

Label the image

- Person
- Motorcyclist
- Bike

Semantic segmentation:

Neural networks for Natural Language Processing:

Machine translation:

Break through language barriers

Personal Assistant:

Привет, я Алиса

Ваш голосовой помощник. Теперь многие вещи проще делать, говоря со мной.

Neural networks for audio:

Speech recognition:

Music generation:

Neural networks for games:

Atari

Breakout and Space Invaders, 2 of the 49 Atari games used in the paper

Alpha GO

Dota 2

Diversity in Deep Networks

Variety in Network Topology

Recurrent NNs common for NLP/ASR, DAG for GoogLeNet, Networks with memory...

But there are a few well defined building blocks

Convolutions common for image recognition tasks

GEMMs for recurrent network layers—could be sparse

ReLU, tanh, softmax

Google Inception CNN

- AvgPool
- MaxPool
- Concat
- Dropout
- Fully connected
- Softmax

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Настройка окружения

Installing Intel-optimized TensorFlow:

- 1.conda create -n tf intel -c intel python=3 pip numpy
- 2.source activate tf_intel
- 3.pip install https://anaconda.org/intel/tensorflow/1.6.0/download/tensorfl ow-1.6.0-cp36-cp36m-linux_x86_64.whl
- 4.pip install notebook matplotlib keras Pillow hdf5

Installing non-optimized TensorFlow:

1.conda create -n tf simple python=3 tensorflow

Convolution Neural Networks Layers:

Linear layer:

Convolution:

Pooling:

ReLU:

f(x) = max(x,0)

Choosing a learning rate:

Optimization task:

Loss function:

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Model parameters:

- Network architecture
- Batch size
- Optimizer: SGD, Adam, Adadelta...
- Learning rate

Parameters TensorFlow:

- •intra_op_parallelism_threads Nodes that can use multiple threads to parallelize their execution will schedule the individual pieces into this pool
- •inter_op_parallelism_threads All ready nodes are scheduled in this pool
- By default, both parameters is equal to the number of logical CPU cores.

MKL parameters:

- **KMP_SETTINGS** Enables (true) or disables (false) the printing of OpenMP* run-time library environment variables during program execution
- **KMP_BLOCKTIME** Sets the time, in milliseconds, that a thread should wait, after completing the execution of a parallel region, before sleeping. Default time: 200
- **KMP_AFFINITY** Enables the run-time library to bind threads to physical processing units
- **OMP_NUM_THREADS** Specifies the number of threads to use intra_op_parallelism_thread

Important:

Use NCHW data format (channel-first) for better perfomance.

Changing batch_size:

1. Open cifar10_main.py file

2. At the end of the file change batch_size in parameters list:

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Activity 1: non-optimised TensorFlow

- 1.source activate tf_simple
- 2. Launch training:
 - python cifar10_main.py
- 3. Change batch_size to 64 and launch training again:
 - python cifar10_main.py
- 4. Change batch_size to 256 64 and launch training again :
 - python cifar10_main.py
- 5.conda deactivate

After 500 steps you can interrupt training (Ctrl+C)

Activity 2: Intel optimised TensorFlow

1.source activate tf_intel

2. Change KMP_BLOCKTIME и KMP_AFFINITY parameters in cifar10_main.py file:

os.environ["KMP_BLOCKTIME"] = str(0)

os.environ["KMP_AFFINITY"] = str("verbose, warnings, respect, granularity=fine, compact, 1, 0")

3. Launch training:

```
python cifar10_main.py
```

4. Change batch_size to 64 and launch training again:

python cifar10_main.py

5. Change batch_size to 256 and launch training again :

python cifar10_main.py

Results:

	batch_size=64	batch_size=128	batch_size=256
TensorFlow	58s	76s	102s
Intel optimized TensorFlow	11s	17s	26s

Intel optimizations provide high speedup during training.

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Software