
Development of cross-platform 

communication library in C++, with 

support for multiple scripting 

languages: architectural pitfalls.

By Oleg Iakushkin

PhD student from Saint Petersburg State University (SPBU)



Why C++?
Better Code: Concurrency

Sean Parent 



Why C++?
Src: Better Code: Concurrency

Sean Parent 

NEC2015: Ian Bird discussion on 

CERN Compute requirements



Make your C++ code available – create portable API!

- C++ (SWIG, manual interop)

- C (manual interop)



Language selection C

When you create a library interface, you will most probably prefer to get as wide range of possible languages as possible. 

One might try to create a C interface as big teams do for libraries such ZeroMQ. Yet, I must recommend against it: 

• It is extremely hard to change it during early development stages (in which it would change often).

• It will drag you away from C++ into C development – raw strings, void * pointers, no struct/class abstractions etc. 

• C is great yet if your main language is C++ it will be hard to create sustainable C API on top of C++ codebase (or it will 

take lots of time)



Language selection C++

There are lots of code formatting styles for C++ such as Mozilla Developer guide on Coding style, Google C++ Style 

Guide, Joint Strike Fighter C++ Coding Standards and C++ Core Guidelines

• https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style

• https://google-styleguide.googlecode.com/svn/trunk/cppguide.html

• http://www.stroustrup.com/JSF-AV-rules.pdf

• https://github.com/isocpp/CppCoreGuidelines



Passing Events

C++ has many ways to express an event model: C function pointer, functional object, lambda 

expression, std::function...

Wrappers that produce managed code tend to escape event code generation for most languages 

simply skipping related code.



Events via inheritance



Templates give us pain



How one can wrap it in target language



C# Usage



Templates and Interfaces



Avoid generic interfaces



User space functions

The only fast, cross language way to pass user functions in SWIG is using inheritance. It is useful to 

provide utilities in end user language (like lambda/functional style events and async routines).



Conclusion

1. Pure C APIs with C++ backend make development iterations longer.

2. It is important to keep architecture as simple and bare bone C++ as possible.

3. Any standard library object can cause pain in one language or another (like for example std::complex).

4. Minimize header file includes required by your API.

5. Templates require special treatment and are not there in generated wrappers code.

6. Create special target language helper objects that could help integration of your library into users codebase.



C++ and SWIG 

can help 

adoption of your 

performant code

THANK YOU FOR YOUR ATTENTION


