

Real-time flavour tagging selection in ATLAS

Lídíja Žívkovíć, Instítute of Physics, Belgrade

On behalf of the

collaboration

09/29/15

Outline

- Motivation
- Overview of the trigger
- b-jet trigger in Run 2
- Future Fast TracKer

	Bunch spacíng [ns]	√s [TeV]	Inst. Lumí [cm ⁻² s ⁻¹]	<µ>
Run 1 2012	50	8	8×10^{33}	25 - 30
Run 2 2015 -	25	13	1.5×10^{34}	40 -45

- <complex-block>
- μ Collisions/bunch x-ing
- Increased energy, luminosity and pile up
 - => Rate increases by ~5 times
- > => Upgrade trigger

Motivation

- b-jet tagging is important in many physics analyses
- For final states with no leptons, b-jet triggers are crucial
 - All can benefit from their inclusion
- But triggering on b-jets is very challenging
 - Large output rate L1
 - multi-jet background not readily suppressed at L1
 - Tracking information critical
 - CPU/time expensive

b-jet triggers

Several B hadron properties can be exploited to tag the b-jets:

long B hadron lifetime (1.57±0.01 ps) corresponds
to a measurable decay length (few mm for E≈ 50GeV)
high mass (~5.2 GeV)

- b-tagging exploits these using following
 - Secondary vertex (SV)
 - Impact parameter (IP)
 - => Combine in multivariate technique (MVA)
- In Run 1 algorithms that ran online evolved:
 - 2012: IP3D+SV1 combines transverse and longitudinal impact parameter distributions with the likelihood of the secondary vertex based on the mass, the number of two-track vertices and the fraction of the energy of the jet in the secondary vertex

09/29/15

NSTITUTE OF PHYSICS

BELGRADE

Overview of the trigger system

• Level-1 Trigger:

INSTITUTE OF PHYSICS

BELGRADE

- Custom electronics to
 determine Regions of Interest
 (RoIs) in the detector based on
 coarse calorimeter and muon
 detector information
- Rate reduction: 40 MHz \rightarrow 100 kHz (70 kHz in Run 1)
- Latency 2.5 µs

- High Level Trigger:
 - Software algorithms running on RoIs or full event information
 - Rate reduction: 100 kHz \rightarrow 1 kHz (1.5 kHz peak)
 - Average latency 0.2 s

Hardware improvements relevant for b-jet triggers

Insertable b-layer (IBL)

NSTITUTE OF PHYSICS

BELGRADE

- New pixel layer designed to assist in tracking (faster now) which is vital to accurately identify a b-jet
- Introduction of IBL allows for better d_0/z_0 resolution

More details later: 09/29/15 Yang Qin – ID

- L1 Topological trigger subsystem
 - Part of the new Central Trigger Processor (CTP)
 - Reconstructs derived physical quantities with a rate of 40 MHz
 - Trigger decision based on different topologies

Hardware improvements relevant for b-jet triggers

Insertable b-layer (IBL)

NSTITUTE OF PHYSICS

BELGRADE

- New pixel layer designed to assist in tracking (faster now) which is vital to accurately identify a b-jet
- Introduction of IBL allows for better d_o/z_o resolution

- L1 Topological trigger subsystem
 - Part of the new Central Trigger Processor (CTP)
 - Reconstructs derived physical quantities with a rate of 40 MHz
 - Trigger decision based on different topologies

- ∆R between muon and jet allows for identification of possible semileptonic
 b-quark decays

New High-Level Trigger features

- The new merged HLT replaced Level 2 + Event Filter split in Run I
- ATLAS
 - Reduced complexity of the system and dynamic resource sharing
 - Efficient coupling between HLT selection steps reducing duplication of CPU usage and network transfer of detector data
- Increased resources for larger CPU processing and network traffic, which scale with luminosity
- Software Improvements:
 - Adopted offline techniques and algorithms where possible.
 - Offline / Trigger harmonization simplify efficiency determinations.
 - Less code duplication between online & offline algorithms.
 - Increased use of global reconstruction
 - Advanced multiprocessing to fully utilize available hardware

b-jet trigger improvements: new configuration

- Primary vertex finding is challenging and demanding in resources
- Multiple ROI: Multiple track reconstruction in overlapping areas
- Super-ROI: Unique reconstruction in single sROI \rightarrow faster processing
- Two-step tracking fast for primary vertex finding, precision for tagging

Offline tools

Loose

79%

- In Run 1 b-jet trigger used a combination of IP3D and SV1
 - Both were specifically designed online algorithms that resembled offline algorithms
- Big effort to reuse offline code and move to the use of ³ advanced tools and multivariate taggers online
 - Larger rejection power allows looser working point definitions
 - Efficiency for b-tagging is preserved
- MVA algorithm MV2c20 is used in Run 2
 - BDT using IP3D, SV1, and JetFitter
 - specialized for additional c-jet rejection
 - same algorithm is used in physics reconstruction

JetFitter: likelihood technique that exploits the topology of weak b- and c-decays . L.Z.

Run 2 b-jet trigger menu

- Multi b-jet items
 - From single high \textbf{p}_{τ} to quadruple lower (down to 35 GeV) \textbf{p}_{τ} items
 - Can be seeded from three 25 GeV L1 jets, or four 15 GeV L1 jets
 - Three operating points which correspond to the offline ones
- Muon-in-jet items
 Single mu-jet mu-
 - Single mu-jet, mu-jet+jets and mu-jet+b-jets
 - Usage of L1topo items
- Needed for Higgs boson and exotics physics
 - All hadronic ttH→ttbb,
 VBF H → bb, bA →bbb,
 X→HH→bbbb, 3rd generation squarks...
 b-jet triggers, L. Z.

Loose	Medíum	Tíght	í
79%	72%	62%	

INSTITUTE OF PHYSICS BELGRADE

Future - Fast TracKer

Hardware based track trigger which will start operate in Run 2

- Run at full L1 output rate; O(100 µs) latency
- Track finding:
 - p_{τ} > ~1 GeV / $|d_0|$ < 2 mm / $|z_0|$ < 110 mm
 - 5 track parameter / list of hits / χ^2 estimate
 - ~90% efficient with respect to the full offline tracking for central η

More details later: Asbah Needa - FTK

INSTITUTE OF PHYSICS BELGRADE

FTK: Application

Entries

ormalized

10

10

 10^{-4}

10⁻⁵

-2

-15

- Possibility to refit tracks with offline like track fitter
 - Better estimation of track parameters
 - Reduction of fake tracks due to refined χ^2
- b-jet identification
 - Improve b-tag performance in RoI
 - Run track finding on more RoIs
 - Full scan b-tagging independent of RoI

Light-flavors jets

0.5

-0.5

13

1.5

d0 [mm]

FTK: Possible improvement

09/29/15

INSTITUTE OF PHYSICS

BELGRADE

100

b-iet efficiency [%]

- b-jet triggers are important for many physics analyses
 - One of the most complicated signatures
- Many changes in the ATLAS trigger system for Run 2
 - B-jet trigger software was revisited and many improvements are made
 - Diverse menu, comprising multi-jet and muon-in-jet items is already running in Run 2
- Future improvements are foreseen with an inclusion of the Fast TracKer

Хвала на пажњи Thank you Спасибо