
Parallel computing with BEAN - ROOT-based BES-III
Analysis Framework

Evgeny Boger

JINR Dubna

LNP NEOVP

NEC'2015

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 1 / 23

mailto:boger@jinr.ru


Outline

BEAN in a nutshell

PROOF - The Parallel ROOT Facility

Using Hadoop for parallel computing in HEP

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 2 / 23



BEAN � ROOT-based analysis framework

Lightweight tools for interactive analysis of DST

For interactive analysis code development

For iterative event �ltration

Fast and optimized for standalone use

Low number of external dependecies (2 so far)

The main data �ow

Input format = Output format = BESIII DST

User histograms and ntuples are saved in output root-�le.
Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 3 / 23



BEAN parallelization with PROOF

The PROOF is a part of the ROOT enabling an analysis of
large sets of ROOT �les in parallel
on clusters of computers or many-core machines

The main idea of Bean is to run on the PROOF system with
minimal changes in the user interface

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 4 / 23



How to run Bean in PROOF mode?

Bean in PROOF mode is a transparent extension of single user session

Example (run Bean at local PC)

> ./bean.exe -u MyAnalysis root://besdata.jinr.ru//data/bes3/run.dst \
-h histo.root -o selected_events.root

Example (run Bean in PROOF-Lite mode)

> ./bean.exe -u MyAnalysis root://besdata.jinr.ru//data/bes3/run.dst \
-h histo.root -o selected_events.root -l

Example (run Bean in PROOF-cluster mode)

> ./bean.exe -u MyAnalysis root://besdata.jinr.ru//data/bes3/run.dst \
-h histo.root -o selected_events.root -p “xrootd@lgdui01”

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 5 / 23



PROOF Summary

Advantages

Tightly integrated with ROOT

Very fast (thanks to real-time load balancing and low startup time)

Data locality is taken into account

Stable and convinient PROOF-Lite mode (single PC)

Disadvantages

Again, tightly integrated with ROOT

Somewhat fragile

Sensitive to memory leaks

No partial result support

Not suited well for large (1k+ nodes) clusters
I Real-time load balancing doesn’t scale well

No decent scheduling

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 6 / 23



What is Hadoop?

Apache Hadoop

An open-source software framework for distributed storage and
distributed processing of very large data sets on computer clusters built
from commodity hardware.

Created in 2008. Widely adopted througout the industry.

Provides reliable distributed �le system (HDFS)

Provides framework for job scheduling and cluster resource
management (Hadoop YARN)

Hadoop MapReduce - system for parallel processing of large data
sets built on top of YARN. Follows the �Moving Compute to Data�
paradigm.

Not limited to MapReduce: HBase, Hive, Pig, Crunch, Spark, etc.

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 7 / 23



Why Hadoop?

Industry standard (Yahoo!, Facebook, Baidu, Yandex, etc.)

Actively maintained and developed by the industry

Scalable up to 10 000 nodes and 100 000 tasks.

Reliable

Commercial support is available from a number of companies

Typical HEP physics analyses �t well to MapReduce paradigm

Hadoop meets HEP

Hadoop MapReduce was designed to process (structured) text

Hadoop MapReduce tasks operate on row-oriented data formats

Hadoop is written in Java. Python and C++ support are very limited.

Hadoop development is focused on scalability rather than performance

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 8 / 23



HDFS Blocks

Hadoop HDFS is a write-once, read-many �lesystem

Files are divided to even-sized blocks as they created (128MB)

Blocks are being independently replicated and managed

Blocks from the single �le will end up stored on di�erent machines

HDFS �le is a mere list of block ids

http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/hdfs-and-mapreduce.html

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 9 / 23



Data Locality and Hadoop Map Taks

Each Map Task has its pre-assigned set of data to process (called
InputSplit)
Data locality is taken into account when creating InputSplits
Typicaly InputSplit is equal in size to one HDFS block (i.e.
128MB)

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 10 / 23



Data Locality and Hadoop Map Taks

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 10 / 23



Using Hadoop with ROOT-based analysis: Task Input

This simple idea was originally proposed in 1

Store ROOT �les as it is in HDFS

Make ROOT �les consist of no more than one HDFS block
I Increase HDFS block size to reasonable extent (2GB)
I typical ROOT files are smaller than 2GB

Single ROOT �le ⇔ single InputSplit ⇔ single Map task

1
Running a typical ROOT HEP analysis on Hadoop MapReduce, S A Russo et al, CHEP2013

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 11 / 23

http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032080/pdf


Task Input Optimization

Single InputSplit contains one or more ROOT �les

Data locality is still taken into account

The deisred size (in MB) of each split is con�gurable. Boundary
cases are

I Single ROOT file per Map
I Single Map per Node

Less overhead from launching JVM and ROOT instances

More sensitive to failures (such as memory leaks)

Custom implementation of CombineInputFileFormat is used

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 12 / 23



Analysis task I/O

Now we want to run ROOT analysis on the set of ROOT �les

The idea is to prevent Hadoop from reading the data and splitting
it to the records
Instead, the HDFS �le URL is extracted on task startup. The
HDFS �le is then downloaded and processed by external
application.

Accessing HDFS �les

Copy to temporary local location from JAVA code or external code

Use FUSE

Use ROOT I/O plugin (THDFSFile 1)

Optimizing reads

Remember to enable read short-circuit for HDFS datanodes and
clients

Use libhdfs3 - experimental native HDFS library
1
Our THDFSFile patchset is available at https://github.com/root-mirror/root/pull/94Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 13 / 23

https://github.com/root-mirror/root/pull/94


Analysis job

Output

�Task side-e�ect �les� are used
to produce output

ROOT writes to HDFS via
temporary local �les

Hadoop job sequence

First map-only job processes
input

Second map-only job merges
output histograms to single
HDFS �le

Merging may be skipped or
done by client

Output DST �les are left on
HDFS unmerged to be used as
dataset

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 14 / 23



Generic tool to run ROOT-based analyses on Hadoop

So far everything wasn't BEAN-speci�c

It wasn't even ROOT-speci�c

Generic RunOnHadoop.jar JAVA class is provided

User need to provide the class with selector executable, merger
executable (optional) and input and output locations

List of input �les, output locations and other parameters are
passed to the executable via environment variables

Stdout and stderr are saved to job history

Example

$ hadoop jar RunOnHadoop.jar RunOnHadoop -�les wrapper.py
-archives Bean.zip#Bean hdfs_input hdfs_output

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 15 / 23



BEAN on Hadoop

It's not hard to run PROOF-aware code on Hadoop

PROOF support codebase is heavily reused

Some boilerplate code is used in selector wrapper script to create
TChain from HDFS input �les and run TSelector on it

PROOF PAR packages are reused to send user analysis and
libraries to worker nodes via Hadoop Distributed Cache.

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 16 / 23



TODO

Properly document and share the source code 1

Find a way to directly output ROOT �les to HDFS

Implement TProofPlayer interface to mimic PROOF

Try a (very) experimental native Hadoop job API to get rid of
JVM completely

1
Will be available soon at http://bes3.jinr.ru

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 17 / 23

http://bes3.jinr.ru


Credits

We thank JINR cloud team, namely Nikolay Kutovskiy and
Aleksandr Baranov, for providing us with cloud-based cluster for
testing purposes.

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 18 / 23



BACKUP

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 19 / 23



TSelector

Analysis code to be used with PROOF should be organized as
TSelector ancestor class. This class (called selector) is ought to process
the single ROOT TTree.

Begin - executed on client prior to processing

SlaveBegin - executed on worker nodes prior to processing

Notify - called by PROOF when the new �le is about to be
processed

Process - process the single event

SlaveTerminate - executed on worker nodes at the end

Terminate - executed on client at the end

Example (Example PROOF usage)

root [0] tree->Process(�ana.C�)
root [1] TProof::Open(�remote�)
root [2] chain->SetProof();
root [3] chain->Process(�ana.C�)

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 20 / 23



PROOF terminology

PROOF-cluster
Master

Client

Worker 1

Worker 2

Worker 3

Terminology

Client:
Your machine running a
ROOT session that is
connected to a Master

Master:
PROOF machine
coordinating work between
Workers

Worker:
PROOF machine that
processes data

PROOF-Lite:
Client, Master and Workers
are one multicore /
multiprocessor PC.

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 21 / 23



PROOF terminology

PROOF-Lite:

all in one
Master

Client

Worker 1

Worker 2

Worker 3

Terminology

Client:
Your machine running a
ROOT session that is
connected to a Master

Master:
PROOF machine
coordinating work between
Workers

Worker:
PROOF machine that
processes data

PROOF-Lite:
Client, Master and Workers
are one multicore /
multiprocessor PC.

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 21 / 23



PROOF Datasets

ROOT Dataset is a named list of �les which can additionally store
some meta-information.

Accessed via TFileCollection

PROOF usage:
I dataset can be registered on Master
I dataset can be checked. Meta-information is being filled on this step
I User can retrieve list of datasets from Master
I User can retrieve the single dataset by its name
I TProof::Process can be used on dataset instead of TChain

Example

root [2] gProof->Process(“Dataset1”, “tutorials/tree/h1analysis.C+”)

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 22 / 23



PAR Packages

PAR (Proof Archive)

.tar.gz archive containing �les and meta-data.
I shell script BUILD.sh - called every time package is updated.
Usually contains some building sequence, like call to Make.

I ROOT script SETUP.C, called every time package is used. Usually
handles some kind of dependency control and the loading of shared
libraries.

PAR package can be distributed on worker nodes by request

Clients are claiming which PAR packages they are using

PROOF implements version control on packages

Evgeny Boger (JINR) BEAN Parallel Computing 01 October 2015 23 / 23


