XXV Symposium on Nuclear Electronics and Computing - NEC'2015



## The development of hybrid metadata storage for PanDA Workload Management System

M. Grigorieva, K. De, M. Golosova, A. Klimento, E. Ryabinkin (National Research Center "Kurchatov Institute", Brookheaven National Laboratory)

### Meta-data, produced by large-scale scientific experiments



## **PanDA at Glance**



**ORACLE** is used as the storage back-end, keeping all meta-information about computational tasks, jobs, datasets

### BigPanDAMon

#### http://bigpanda.cern.ch/

Visualizing of the state of current and historical jobs, tasks, datasets, and performs run-time and retrospective analysis of failures on all used computing resources.

#### Job's meta-data

- ✓ statistical analysis of recent workflows,
- ✓ detection of faulty resources,
- ✓ prediction of future usage patterns
- ✓ PanDA full archive now hosts information of over billion of records – all the jobs since the system started in 2006.

- ✓ Pilot-based WMS (pilots "place holders" for payload)
- PanDA Server is the main component which provides a task queue managing all job information centrally
- Jobs are submitted to the PANDA server via a simple Python/ HTTP client interface
- Pilots retrieve jobs from the PANDA server to run the jobs as soon as CPU's becomes available



The number of finished jobs per day - currently it's up to 2 million jobs per day

## PanDA meta-data storage technicalities

#### ✓ Actual DB clients

- ✓ Real-time monitoring
- ✓ queued/executing/paused jobs
  - Jobs partitioned by day



#### ✓ Archive DB clients

- ✓ Analytical tasks
- ✓ Finished jobs

#### Challenge

As the archived data volume grows, the underlying software and h a r d w a r e s t a c k encounters certain limits that negatively affect processing speed and the possibilities of metadata analysis.

Grigorieva Maria, NEC 2015

BASE (Basic Availability, Soft-state, Eventual consistency)

Some table have defined partitions

each covering three days window,

others a time range of a month

## PanDA Jobs Status/Error monitoring

- One of the primary goals of PanDA monitoring is the spotting job failures.
- Error messages play a key role in determining the potential problems that might arise.

#### 1. Errors Summary filtered by parameter

|           |                    | Number of Er | rors Error Name : Code Error Dialog Job Statuses                                                               |  |  |  |  |  |
|-----------|--------------------|--------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|           | Site error summary |              |                                                                                                                |  |  |  |  |  |
| rid Sites | AGLT2_MCORE        | 8            | Total errors in 8 jobs. Finished: 108 Failed: 13 % failed: 10 Holding: 3 Cancelled: 0                          |  |  |  |  |  |
|           |                    | 7            | exe:65 Non-zero return code from EVNTtoHITS (65); Core dump at line 10313 (see jobReport for further details)  |  |  |  |  |  |
|           |                    | 1            | exe:68 Fatal error in athena logfile: "G4 exception at line 17297 (see jobReport for further details)"         |  |  |  |  |  |
|           | AGLT2_SL6          | 7            | Total errors in 7 jobs. Finished: 1708 Failed: 11 % failed: 0 Holding: 70 Cancelled: 30                        |  |  |  |  |  |
|           |                    | 5            | ddm:100 Setupper_subscribeDistpatchDB() could not register location for prestage                               |  |  |  |  |  |
|           |                    | 2            | exe:69999 TRF_UNKNOWN   "III MADGRAPH TERMINATES NORMALLY: NO MORE EVENTS IN FILE III"   "./src code 0: this-> |  |  |  |  |  |
|           | ANALY_AGLT2_SL6    | 23           | Total errors in 23 jobs. Finished: Failed: % failed: Holding: Cancelled:                                       |  |  |  |  |  |

#### 2. Errors Count Timeline Histogram

G



### BigPanDAMon

#### http://bigpanda.cern.ch/errors/

WC Consumption for Successful and Failed Jobs (Sum: 1,760,314,895,831)



#### 3. Overall error summary

| Overall error summary |          |         |                                                                   |  |  |  |  |
|-----------------------|----------|---------|-------------------------------------------------------------------|--|--|--|--|
| Category:code         | Job list | Nerrors | Sample error description                                          |  |  |  |  |
| transformation:11     | jobs     | 7276    | Error when handling transform output file                         |  |  |  |  |
| transformation:2      | jobs     | 412     | Payload core dump                                                 |  |  |  |  |
| transformation:1      | jobs     | 395     | Unspecified error, consult log file                               |  |  |  |  |
| jobdispatcher:100     | jobs     | 301     | lost heartbeat : 2015-09-14 06:54:23                              |  |  |  |  |
| taskbuffer:101        | jobs     | 220     | transfer timeout for HITS.06424728096991.pool.root.1 log.0        |  |  |  |  |
| pilot:1212            | jobs     | 211     | Payload ran out of memory                                         |  |  |  |  |
| exe:65                | jobs     | 191     | Non-zero return code from EVNTtoHITS (65); Core dump at lin       |  |  |  |  |
| pilot:1137            | jobs     | 191     | Put error: ^!^                                                    |  |  |  |  |
| transformation:6      | jobs     | 184     | TRF_SEGVIO - Segmentation violation                               |  |  |  |  |
| pilot:1201            | jobs     | 164     | Job killed by signal 15: Signal handler has set job result to FAI |  |  |  |  |
| taskbuffer:119        | jobs     | 160     | all event ranges failed                                           |  |  |  |  |
| pilot:1213            | jobs     | 119     | Reached maximum batch system time limit                           |  |  |  |  |
| transformation:40     | jobs     | 117     | Athena crash - consult log file                                   |  |  |  |  |
| transformation:220    | jobs     | 106     | Proot: An exception occurred in the user analysis code            |  |  |  |  |
| pilot:1099            | jobs     | 102     | Get error: Staging input file failed                              |  |  |  |  |

#### Grigorieva Maria, NEC 2015

### **PanDA Monitor Workflow and Statistics**

| pandaid                        | a    | assig | atlasrelease        | att | batchid             | br | brokerag            | cloud | cmto  |
|--------------------------------|------|-------|---------------------|-----|---------------------|----|---------------------|-------|-------|
| 2121143457                     | 0    | 1000  | < <null>&gt;</null> | 0   | tier2-01.ochep      | 0  | < <null>&gt;</null> | US    | x86_6 |
| 2281223849                     | 0    | 1000  | < <null>&gt;</null> | 2   | 5395479.gk02        | 0  | < <null>&gt;</null> | US    | x86_6 |
| 2128521026                     | 0    | 1000  | Atlas-17.8.0        | 1   | 7448795             | 0  | < <null>&gt;</null> | DE    | x86_6 |
| 2272805507                     | 0    | 1000  | Atlas-17.2.11       | 1   | 12323577.ce3.t      | 0  | < <null>&gt;</null> | CA    | i686- |
| 2242258248                     | 0    | 120   | Atlas-17.7.3        | 1   | 21340739.moa        | 0  | < <null>&gt;</null> | CA    | x86_6 |
| 2244979033                     | 0    | 850   | Atlas-19.1.1        | 1   | 772127              | 0  | < <null>&gt;</null> | US    | x86_6 |
| 2073963856                     | 0    | 540   | Atlas-17.2.1Atl     | 1   | iut2-gk.mwt2        | 0  | < <null>&gt;</null> | US    | i686- |
| 2074618702                     | 0    | 1000  | Atlas-17.2.4        | 0   | 499454204           | 0  | < <null>&gt;</null> | CERN  | i686- |
| 2038679208                     | 0    | 1000  | Atlas-17.2.7        | 0   | 1337819.t2ce0       | 0  | < <null>&gt;</null> | UK    | x86_6 |
| 2128168216                     | 0    | 1000  | < <null>&gt;</null> | 0   | 18184211.ce00       | 0  | < <null>&gt;</null> | NL    | x86_6 |
| 2210142785                     | 0    | 1000  | < <null>&gt;</null> | 0   | 4284907.gk02        | 0  | < <null>&gt;</null> | US    | x86_6 |
| 2328663797                     | 0    | 1000  | < <null>&gt;</null> | 1   | 31883254.torg       | 0  | < <null>&gt;</null> | DE    | x86_6 |
| 2055329219                     | 0    | 540   | Atlas-17.2.1Atl     | 1   | gridgk02.racf       | 0  | < <null>&gt;</null> | US    | i686- |
| 2043174120                     | 0    | 1000  | Atlas-17.2.7        | 3   | 18135293.pbs        | 0  | < <null>&gt;</null> | DE    | i686- |
| 2308518425                     | 0    | 1000  | < <null>&gt;</null> | 1   | < <null>&gt;</null> | 0  | < <null>&gt;</null> | IT    | x86_6 |
| 2098284252                     | 0    | 880   | Atlas-17.2.12       | 1   | 5885362             | 0  | < <null>&gt;</null> | DE    | i686- |
| 2259796536                     | 0    | 1000  | Atlas-17.2.7        | 0   | 1225249.lcg-c       | 0  | < <null>&gt;</null> | FR    | x86_6 |
| 2312633626                     | 0    | 1000  | < <null>&gt;</null> | 1   | 31449538.torq       | 0  | < <null>&gt;</null> | DE    | x86_6 |
| 2305287613                     | 0    | 130   | Atlas-17.2.11       | 1   | aipanda013.ce       | 0  | < <null>&gt;</null> | NL    | x86_6 |
| 2196175976                     | 0    | 1000  | Atlas-17.2.8        | 0   | mwt2-gk.cam         | 0  | < <null>&gt;</null> | US    | i686- |
| 2064305415                     | 0    | 1000  | Atlas-17.1.2        | 0   | uct2-gk.mwt2        | 0  | < <null>&gt;</null> | US    | i686- |
| 2054137650                     | 0    | 0     | Atlas-17.2.2        | 0   | 15559788.ce03       | 0  | < <null>&gt;</null> | ES    | x86_6 |
| 2266123381                     | 0    | 1000  | Atlas-17.2.11       | 0   | 879248.grid-b       | 0  | < <null>&gt;</null> | DE    | i686- |
| 2160991983                     | 0    | 850   | Atlas-17.2.13       | 1   | gridgk04.racf       | 0  | < <null>&gt;</null> | DE    | i686- |
| 2172892811                     | 0    | 520   | Atlas-17.2.1Atl     | 1   | 10405853.ce3.t      | 0  | < <null>&gt;</null> | CA    | i686- |
|                                |      |       | i                   |     | 14224               | 0  | < <null>&gt;</null> | US    | x86_6 |
|                                | JOD: | saci  | ive                 |     | 41019.lcg-ce0       | 0  | < <null>&gt;</null> | FR    | i686- |
| Jobsdefined                    |      |       |                     | -   | 374999.vserv1       | 0  | < <null>&gt;</null> | NL    | x86_6 |
|                                |      |       |                     | +   | arc-ce01.gridp      | 0  | < <null>&gt;</null> | UK    | i686- |
|                                |      |       |                     | +   | 2065179.grid        | 0  | < <null>&gt;</null> | DE    | i686- |
| 2210740030 0 1000 Atlas-17.2.3 |      |       |                     | -0  | < <null>&gt;</null> | 0  | < <null>&gt;</null> | ND    | i686- |
| lobsarchived                   |      |       |                     | +   | 4287070.seer.t      | 0  | < <null>&gt;</null> | UK    | x86_6 |
| Jobsaichivea                   |      |       |                     |     | aridak04 racf       | 0  | < <null>&gt;</null> | DE    | i686- |

- Delegating data aggregating tasks to the monitor, instead of using database-specific data processing tools, slows down the execution of requests.
- Building errors report, based on historical data for a long time interval (months, years) may take considerable time, exceeding the reasonable time of web page generation.





Total page generation time, including database request and aggregating obtained meta-data, dramatically decreases with the growth of the number of processing jobs

Since we have already collected meta-data for more than 10 years and the amount of accumulated meta-data is constantly increasing, there is a need for long-term failures forecasting and analysis of system behavior under various conditions.

### Hybrid Meta-data Storage Framework (HMSF) architecture





## Cassandra as NoSQL database back-end

- ✓ A common data modelling strategy for NoSQL database systems is to store data in <u>query-specific tables</u>.
- No support of foreign key relationships, no JOINs of multiple CFs to satisfy a query.
- Cassandra performs best if all the data required for a given query is located in the same <u>column family (CF)</u>.

- Denormalize the data model so that a query can be served from the results <u>from one row and query</u>.
- All required data can be available <u>in just one read</u> which prevents multiple lookups.







- The row of data is sent to nodes by the value of the JobID hash value
- The main table contains the most information, but it is hard for an application to work with without any preprocessing.



To improve BigPanDAmon performance, jobs meta-data aggregation logic was added to the HMSF.

## Cassandra time granularity auxiliary table

#### GRADUALLY TIME-SERIES AGGREGATION

to maintain data at different levels of granularity ranging from fine-grained to coarse-grained data, where each level can be used for analysis and reporting purposes on different detalisation.



To get errors meta-data for some time period we need to make a set of requests to time granularity table. The number of requests is defined by time intervals.

- Errors metadata partitioned by days in Cassandra data model.
- For each day we have defined time intervals.
- To reduce the size of Cassandra partitions we use composite partition key.
- Job errors meta-data are spread evenly across Cassandra cluster nodes according to the combinations of date and interval values.

| date       | interval                                            | Base_<br>mtime | param     | errcode                                                 | Err_count               | Job_count               |
|------------|-----------------------------------------------------|----------------|-----------|---------------------------------------------------------|-------------------------|-------------------------|
| 2014-01-01 | <mark>10 days</mark><br>[2014-01-01,<br>2014-01-11] | -<br>-<br>-    |           | Pilot:1144<br>Transformation:2<br>Jobdispatcher:100<br> | 16773<br>988<br>736<br> | 16773<br>900<br>736<br> |
| 2014-01-01 | <mark>1 day</mark><br>[2014-01-01,<br>2014-01-02]   | -<br>-         | AGLT2_SL6 | Transformation:2<br>Jobdispatcher:100                   | 5<br>3                  | 3<br>1                  |
| 2014-01-01 | 30<br>minutes                                       | 00:00:00       | AGLT2_SL6 | Transformation:2<br>Jobdispatcher:100                   | ]<br>]                  | 1                       |
|            |                                                     | 00:30:00       | AGLT2_SL6 | Pilot:4476<br>Transformation:99                         | 2<br>1                  | 1<br>1                  |
|            |                                                     |                | AGLT2_SL6 |                                                         |                         |                         |
|            |                                                     | 23:30:00       | AGLT2_SL6 | Pilot:100                                               | 1                       | 1                       |
| 2014-01-01 | 1 minute                                            | 00:00:00       | AGLT2_SL6 | Pilot:98<br>Transformation:98                           | 1<br>1                  | 1<br>1                  |
|            |                                                     |                |           |                                                         |                         |                         |
|            |                                                     | 00:01:00       | AGLT2_SL6 | Jobdispatcher:100                                       | 3                       | 1                       |
|            |                                                     | 23:59:00       | AGLT2_SL6 | Pilot:200                                               | 1                       | 1                       |

## **HMSF Performance Studies**

#### Errors count timeline histogram for different internal intervals



Date slice

#### Number of rows, returned by database query

| ROWS     | 1m      | 30m   | 1d  | 10d |
|----------|---------|-------|-----|-----|
| 10 days  | 14 306  | 432   | 10  | 1   |
| 30 days  | 42 906  | 1 392 | 30  | 3   |
| 60 days  | 85 819  | 2 832 | 60  | 6   |
| 120 days | 170 074 | 5 661 | 120 | 12  |

## Scalability test





### PanDA monitor adaptation to interact with HMSF



# Summary

- It is hardly possible to perform long-term metadata analysis without any precalculation.
- Built NoSQL archive of metadata to improve availability of historical data.
- Prototype of Cassandra archive was created and tested on a 1-year slice of metadata from ATLAS PanDA Archive.
- Developed specific data structure for Cassandra: time granularity table.
- Near-term plans to conduct performance tests of time granularity table with Oracle.
- Adaptation of PanDA Monitor for work with NoSQL archive will be continued.

# Acknowledgment

- This talk drew on presentations, discussions, comments, input from many our CERN, ATLAS, NRC-KI Colleagues, thanks to all people working in PanDA project
- This work was funded in part by the Russian Ministry of Science and Education under Contract N14.Z50.31.0024.

