The design and performance of the ATLAS Inner Detector trigger for Run-II

Yang Qin (Quake) On behalf of the ATLAS Collaboration

The University of Manchester

ATLAS detector @ LHC

- General purpose detector
- Consists of:
 - Muon spectrometer
 - Calorimeter
 - Inner Detector (ID)
 - ID Provides vital information for charged particle tracking and identification

SCT Tracker Pixel Detector TRT Tracker

Solenoid Magnet

Toroid Magnets

ATLAS detector @ LHC

- General purpose detector
- Consists of:
 - Muon spectrometer
 - Calorimeter
 - Inner Detector (ID)
 - ID Provides vital information for charged particle tracking and identification

SCT Tracker Pixel Detector TRT Tracker

Solenoid Magnet

Toroid Magnets

- SCT (Semiconductor Tracker)
 - strip detector
 - 4 barrel layers + 9 forward layers
- Pixel detector
 3 layers

TRT (Transition Radiation Tracker)

 optimally 36 hits

- SCT (Semiconductor Tracker)
 - strip detector
 - 4 barrel layers + 9 forward layers
- Pixel detector
 3 layers

- Upgrade of LHC:
 - Higher centre of mass energy: 8 TeV \rightarrow 13 TeV
 - Bunch interval 50ns \rightarrow 25ns
 - Higher luminosity: 8 x 10^{33} cm⁻²s⁻¹ \rightarrow 2 x 10^{34} cm⁻²s⁻¹
 - Higher pile-up, from 8 TeV \rightarrow 13 TeV: < μ > ~ 20.7 \rightarrow ~50

- Upgrade of LHC:
 - Higher centre of mass energy: 8 TeV \rightarrow 13 TeV
 - Bunch interval 50ns \rightarrow 25ns
 - Higher luminosity: 8 x 10³³ cm⁻²s⁻¹ → 2 x 10³⁴ cm⁻²s⁻¹
 - Higher pile-up, from 8 TeV \rightarrow 13 TeV: <µ> ~ 20.7 \rightarrow ~50
- Upgrade of ATLAS to meet the challenge from
 - More complicated environment
 - Higher event rate

- Upgrade of LHC:
 - Higher centre of mass energy: 8 TeV \rightarrow 13 TeV
 - Bunch interval 50ns \rightarrow 25ns
 - Higher luminosity: 8 x 10³³ cm⁻²s⁻¹ → 2 x 10³⁴ cm⁻²s⁻¹
 - Higher pile-up, from 8 TeV \rightarrow 13 TeV: < μ > ~ 20.7 \rightarrow ~50
- Upgrade of ATLAS to meet the challenge from
 - More complicated environment
 - Higher event rate
- For ID
 - IBL (Insertable B-Layer), 33.25mm from the beamline – improve resolution
 - Upgraded trigger hardware/firmware
 - Redesign of the trigger software
 - faster decision-making without loss in tracking performance

- Upgrade of LHC:
 - Higher centre of mass energy: 8 TeV \rightarrow 13 TeV
 - Bunch interval 50ns \rightarrow 25ns
 - Higher luminosity: 8 x 10³³ cm⁻²s⁻¹ → 2 x 10³⁴ cm⁻²s⁻¹
 - Higher pile-up, from 8 TeV \rightarrow 13 TeV: <µ> ~ 20.7 \rightarrow ~50

R = 299mm

R = 122.5mm R = 88.5mm

R = 50.5mm R = 33.25mm

R = 0mm

- Upgrade of ATLAS to meet the challenge from
 - More complicated environment
 - Higher event rate
- For ID
 - IBL (Insertable B-Layer), 33.25mm from the beamline

Pixels

- improve resolution
- Upgraded trigger hardware/firmware
- · Redesign of the trigger software
 - faster decision-making without loss in tracking performance

IBI

- Upgrade of LHC:
 - Higher centre of mass energy: 8 TeV \rightarrow 13 TeV
 - Bunch interval 50ns \rightarrow 25ns
 - Higher luminosity: 8 x 10³³ cm⁻²s⁻¹ → 2 x 10³⁴ cm⁻²s⁻¹
 - Higher pile-up, from 8 TeV \rightarrow 13 TeV: <µ> ~ 20.7 \rightarrow ~50

R = 299mm

R = 122.5mm R = 88.5mm

R = 50.5mm R = 33.25mm

R = 0mm

- Upgrade of ATLAS to meet the challenge from
 - More complicated environment
 - Higher event rate
- For ID
 - IBL (Insertable B-Layer), 33.25mm from the beamline

Pixels

- improve resolution
- Upgraded trigger hardware/firmware
- · Redesign of the trigger software
 - faster decision-making without loss in tracking performance

IBI

- Upgrade of LHC:
 - Higher centre of mass energy: 8 TeV \rightarrow 13 TeV
 - Bunch interval 50ns \rightarrow 25ns
 - Higher luminosity: 8 x 10³³ cm⁻²s⁻¹ → 2 x 10³⁴ cm⁻²s⁻¹
 - Higher pile-up, from 8 TeV \rightarrow 13 TeV: <µ> ~ 20.7 \rightarrow ~50

R = 299mm

R = 122.5mm R = 88.5mm

R = 50.5mm R = 33.25mm

R = 0mm

- Upgrade of ATLAS to meet the challenge from
 - More complicated environment
 - Higher event rate
- For ID
 - IBL (Insertable B-Layer), 33.25mm from the beamline

Pixels

- improve resolution
- Upgraded trigger hardware/firmware
- Redesign of the trigger software
 - faster decision-making without loss in tracking performance

IBI

In Run-I, 3-level system

L1 (Level 1)

- Hardware/firmware
- 20 MHz input rate
- < 2.5 µs decision
- 70 kHz peak output
- No ID

L2 (Level 2)

- Software
- ~75 ms decision
- 5-6 kHz output

EF (Event Filter)

- Software
- ~1 s decision
- 700 Hz output

In Run-I, 3-level system

L1 (Level 1)

- Hardware/firmware
- 20 MHz input rate
- < 2.5 µs decision
- 70 kHz peak output
- No ID

In Run-I, 3-level system

L1 (Level 1)

- Hardware/firmware
- 20 MHz input rate
- < 2.5 µs decision
- 70 kHz peak output
- No ID

In Run-II, 2-level system

L1 (Level 1)

- 40 MHz input rate
- 100 kHz output

HLT (High Level Trigger)

L2 (Level 2)

- Software
- ~75 ms decision
- 5-6 kHz output

EF (Event Filter)

- Software
- ~1 s decision
- 700 Hz output

HLT (High Level Trigger)

- Target decision time: 200ms
- 1 kHz output
- Single PC farm

In Run-I, 3-level system

L1 (Level 1)

- Hardware/firmware
- 20 MHz input rate
- < 2.5 µs decision</p>
- 70 kHz peak output
- No ID

• In Run-II, 2-level system

• 100 kHz output

Late 2015: New ID track processor Fast TracKer (FTK) Talk by N. Asbah

Target decision time: 200ms 1 kHz output Single PC farm

- Two-stage tracking:
 - Fast tracking
 - Precision tracking

- Two-stage tracking:
 - Fast tracking
 - Precision tracking

6

- Two-stage tracking:
 - Fast tracking
 - Precision tracking

- Two-stage tracking:
 - Fast tracking
 - Precision tracking

Common storage and data preparation

Fast Track Finder (FTF)

Initial object hypothesis

Precision Tracking

- Two-stage tracking:
 - Fast tracking
 - Precision tracking
- Time saved using:
 - Common data preparation

- Two-stage tracking:
 - Fast tracking
 - Precision tracking
- Time saved using:
 - Common data preparation
 - FTF seeds PT, prevent duplicated pattern recognition stage

- Two-stage tracking:
 - Fast tracking
 - Precision tracking
- Time saved using:
 - Common data preparation
 - FTF seeds PT, prevent duplicated pattern recognition stage
- Extra flexibility from optional hypothesis stage

- Run-II algorithm built from Run-I blocks
- Investigation on improvement in speed and memory usage
 - hotspots identified by profiling and optimised

- Run-II algorithm built from Run-I blocks
- Investigation on improvement in speed and memory usage
 - hotspots identified by profiling and optimised
- Other improvement comes from software release update
 - Compiler upgrade: GCC4.3 → GCC4.8
 - 64-bit architecture
 - Linear algebra library: CLHEP \rightarrow Eigen

- Run-II algorithm built from Run-I blocks
- Investigation on improvement in speed and memory usage
 - hotspots identified by profiling and optimised
- Other improvement comes from software release update
 - Compiler upgrade: GCC4.3 → GCC4.8
 - 64-bit architecture
 - Linear algebra library: CLHEP \rightarrow Eigen

Improvement in Run-II strategy

- Time saved from
 - merged data preparation
 - single pattern recognition stage

Run-II HLT tracking performance

- Plots produced from 13 TeV data collected in June and July 2015
- Dedicated performance triggers are used
- Select unbiased sample of events without ID track requirement
- Efficiencies, residuals, and resolutions are calculated w.r.t. the tracks found by the offline reconstruction software

- · Efficiencies as a function of
 - p_T: transverse momentum
 - d₀: transverse impact parameter

Minimum bias trigger

· Efficiencies as a function of

- p_T: transverse momentum
- d₀: transverse impact parameter

Minimum bias trigger

· Efficiencies as a function of

- p_T: transverse momentum
- d₀: transverse impact parameter

- Efficiencies as a function of
 - p_T: transverse momentum
 - d₀: transverse impact parameter
- Very high efficiencies achieved

90^L

Minimum bias trigger 102 102 Efficiency [%] Efficiency [%] 100 100 98 98 96 96 94 94 ATLAS Preliminary Data 13 TeV, June 2015, Minimum Bias Trigger 92 -92 offline track p₋ > 1 GeV · minBias Precision Tracking

 10^{2}

Offline track p $_{\tau}$ [GeV]

- · Efficiencies as a function of
 - p_T: transverse momentum
 - d₀: transverse impact parameter

10

- Very high efficiencies achieved
- η: pseudorapidity

10

1

- p_T: transverse momentum
- d₀: transverse impact parameter
- Very high efficiencies achieved

• η : pseudorapidity $\eta \equiv -\ln\left[\tan(\frac{\theta}{2})\right]$

 10^{2}

Offline track p _ [GeV]

Minimum bias trigger 102

- Efficiencies as a function of •
 - p_⊤: transverse momentum
 - d₀: transverse impact parameter
- Very high efficiencies achieved

• η: pseudorapidity $\eta \equiv -\ln \left[\tan(\frac{\theta}{2}) \right]$

Good n resolution •

10

10⁻³

10⁻⁴

10⁻⁵

-0.15

-0.1

-0.05

0

0.05

0.1

 $\Delta 1/p_T \sim$ resolution on the track curvature •

0.2

- Very high efficiencies
- Flat as a function of p_T and η
- Longer tail in $\Delta 1/p_T$ and lower efficiencies than muon trigger due to bremsstrahlung

Muon trigger resolution

- Very good overall resolution
- Better resolution from Precision Tracking
- Lower resolution at high η due to detector geometry

Conclusion

- Single stage HLT in Run-II
- Dramatic time saving due to merged data preparation and track seeding
- Improvement in algorithm timing from profiling and optimisation
- A factor of 3 reduction in the average processing time for each event, operated at significantly higher input rates
- Good tracking performance
 - Close to 100% efficiency
 - Improved resolution

BACKUP

Two-step tracking for tau/b-jets

- In one-step tracking, CPU timing exhibits non-linear dependence on pile-up (i.e. number of spacepoints to be processed)
- Two-step tracking:
 - reject events without a high-p_T lead track in the RoI with $\Delta \eta \times \Delta \phi \times \Delta z = 0.1 \times 0.1 \times 0.225$ with respect to the central RoI coordinates
 - find additional tracks in $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ RoI within $\Delta z = 10$ mm of lead track

- Run-II algorithm built from Run-I blocks
- Investigation on improvement in speed and memory usage •
- Various tools used for profiling
 - GOoDA

• perf

TRT Extension: 3.1 % -Track Fitter: 0.9 % - Callgrind **Z Finder:** 13.9 % Data Preparation: 40.4 % ATLAS Preliminary Hit Filter: 41.6 %

Improvement from software release

IBL – improved resolution

- Showing here *offline* tracking resolution
- Data 2015 collected using minimum bias trigger
- Data 2012 derived from a mixture of jet, tau and missing E_{T} triggers

