SYSTEM OF HPC CONTENT ARCHIVING

Alexander Bogdanov, Prof., D.Sc. Saint Petersburg State University bogdanov@csa.ru

Andrei Ivashchenko, postgraduate Saint Petersburg State University <u>aiivashchenko@cc.spbu.ru</u>

NEC'15

The problem

- Educational process based on We have to
- Lectures
- Presentations
- Publications
- Textbooks
- etc.

- Store them
- Distribute them
- Provide an access
- Keep them up to date

Main goals

We have to organize:

- Long-term file warehousing
- Basic file operations support
- Full text search based of file contents
- Cluster file analysis for documents

Complicating factors:

- Big amount of files
- Different formats of documents are getting used
- User stores files not systematically

System layer architecture

Data flow

We are dealing with...

Processing results

- Huge amount of small data chunks
- Similar to parent documents

Files

- File size varies a lot, up to ~100MB
- Could be versioned
- Could be duplicated

Deduplication support

- OpenDedup
- btrfs
- lessfs

•ZFS

ZFS configuration on a single host

Storage Host									
ZFS pool									
ZFS ZFS Volume 1 Volume 2		ZFS Volume M							

ZFS on a multiple hosts

NFS Volume										
Storage Host 1					Storage Host N					
ZFS pool 1					ZFS pool N					
ZFS Volume 1.1	ZFS Volume 1.2		ZFS Volume 1.M			ZFS Volume N.1	ZFS Volume N.2		ZFS Volume N.M	

Attaching OpenStack Swift servers

Deduplication performance

—Actual size —Dedup size

Dedup + compression performance

Goods we've got

Common:

 Available on Linux, FreeBSD, Solaris

Brought by ZFS:

- Native data encryption support on Solaris
- Data deduplication
- Data compression

Brought by Swift:

- REST interfaces
- Multitenancy
- Versioning
- Replication
- Scalability

Disadvantages we have to deal with

- Each TB of 64K unique data blocks brings up to 5 GB of block database
- Direct file access procedure through the POSIX interface becomes a little bit complicated
- Internal network traffic overhead
- Swift performance loss

Possible ToDo's

- Usage of native ZFS clone and snapshot functions for file versioning and replication
- Check out Swift-On-File project
- Look for the future GlusterFS 4.0 Release

Thank You!