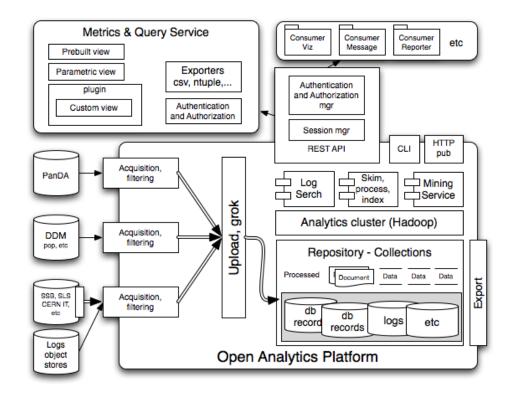
Data Analytics

Ilija Vukotic • University of Chicago

NEC 2015, Bečići, Montenegro

ATLAS

in



Architecture

Main functions

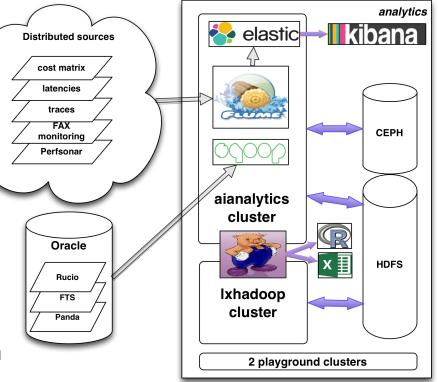
- Acquisition, filtering and upload of data sources into a repository
- Hadoop cluster for analysis of multiple data sources to create reduced collections for higher level analytics
- Serve repository collections in multiple formats to external clients
- Makes collected sources available for export by external users
- Host analytics services on the platform such as ElasticSearch, Logstash, Kibana, etc.

Data sources

PanDA - a data-driven workload management system for production and distributed analysis processing

Rucio - a Distributed Data Management system used to manage accounts, files, datasets, and distributed storage systems.

FAX - Federated ATLAS storage system using XRootD protocol. Provides a global namespace, direct access to data from anywhere.


PerfSONAR - a widely-deployed test and measurement infrastructure that is used by science networks and facilities around the world to monitor and ensure network performance.

FTS - File Transfer Service - the lowest-level data movement service doing point-to-point file transfers.

xAOD - primary analysis data product.

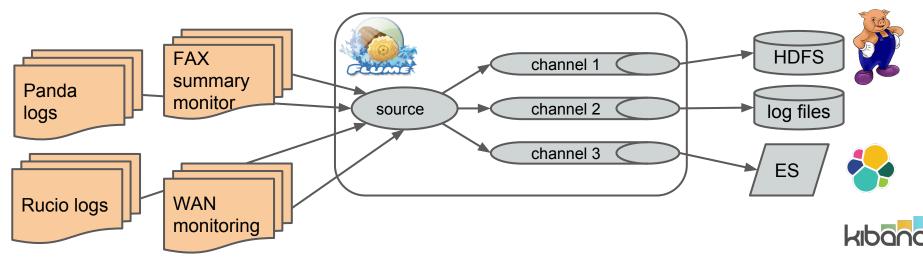
Analytics Platform: Resources & Sources

- Ixhadoop cluster
 - runs base load map-reduce jobs
- voatlasanalytics cluster
 - 5 VM nodes
 - sees the same data as lxhadoop
 - HDFS IO operations
 - runs Flume collectors
 - runs Sqoop jobs
 - runs ElasticSearch
 - o runs Kibana
- "Playground" clusters: 3 small VMs each

Supporting Map Reduce & Search

Hadoop-based collections

- 1. PanDA Job Archive (1TB)
- 2. PanDA State change logs (0.5TB)
- 3. PanDA Logs (16 GB)
- 4. FAX cost matrix, traces (2GB)
- 5. Rucio (42 TB)
- 6. Network data(2-3 GB/hour)


Elastic Search Indices

- 1. PanDA Job Archive (Sqoop import)
- PanDA State change logs (pig reprocessing + import)
- 3. Fax redirectors monitoring (Flume)
- 4. Rucio logs imports (streamed using Logstash)
- 5. PanDA Logger (Flume)
- 6. Network Data (AMQ + Flume)

Central Flume Collector

- Listens for JSON messages (from multiple WLCG or ATLAS services)
- "events" multiplexed into different memory channels based on header content, and sent to log files and/or HDFS for analysis and/or ElasticSearch for indexing
- Currently collects from the CostMatrix service, traces, & FAX redirector summaries

1 x head node:

- 2 core VM
- 4 GB RAM
- 1 TB storage

4 x data node:

- 8 cores VM
- 16 GB RAM
- 1 TB storage CEPH io1

Authentication through SSO

Runs on *voatlasanalytics* cluster:

- No in-box storage.
- CEPH duplicates data on top of ES sharding.
- Not enough memory/core.

New hardware expected.

ES will be offered as a service at CERN.

THE UNIVERSITY OF CHICAGO

2 x head nodes:

- 1 core VM
- 4 GB RAM
- 1 TB storage

4 x data nodes:

- 48 GB RAM
- 24 cores (HT)
- 3 TB storage

- Also used for other MWT2 analytics.
- Currently more than 1.2 billion docs in 3300 shards.

Contains:

- PanDA job archive
- FAX costs
- FAX redirectors monitoring

authentication - username/password

1 head node 5 data nodes

- 20 cores per node (2 CPUs)
- 256 GB RAM
- 2x10 Gb/s Ethernet card
- 40 Gb/s Infiniband
- 2x1 TB disk drives in each node.

Very easy to add more nodes. Can changed for nodes with 8x1 TB disks + 12x4TB

simple firewall protection

- CloudLab is flexible, scientific infrastructure for research on the future of cloud computing.
- Provides control and visibility all the way down to the bare metal.
- Provisioning an entire cloud inside of CloudLab takes only minutes.

Sites:

- <u>Utah / HP</u>
- Wisconsin / Cisco
- <u>Clemson / Dell</u>
- <u>GENI</u>

Still testing a cluster at Clemson University. Great initial results

Analytics Infrastructure - lessons learned

- Need really good hardware lot of RAM, SSD caching, large disks
- ES backups
 - while most of the data could be re-indexed, some exists only in ES.
 - the Shield password protection, role-based access control, very expensive (6k\$/host/year)
 - small but important indices (.kibana) easily backed up every night at Amazon S3.
- Very important to develop and well document pig UDFs for the different analysis needs.
- It is clear that Kibana accessible data have much more use. Try to index as much as possible of the hadoop data.
- Non-negligible learning curve (MR, pig, java, jython) need a lot of documentation, support, education.

Covered use cases

- Rucio
 - Error monitoring
 - Activity tracking
 - Tracking a file/dataset
- Usage of beyond-pledge resources
- Per cloud performance metrics
- Data formats popularity
- xAOD usage monitoring / analysis
- FAX monitoring jobs accessing data over WAN
- FAX redirectors monitoring
- Monitoring local data storage resources (MWT2)

Use cases still to be covered

- WAN performance analysis
- Network weather service
- RTT jobs monitoring
- PanDA task duration analysis
- Geant production log analysis
- Addition to bigpanda (PanDA web frontend)- replace the slowest Oracle searches

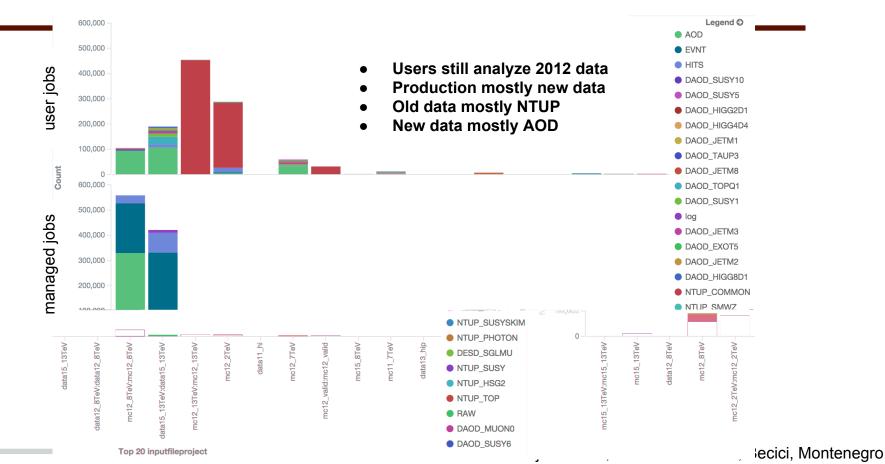
This list grows faster and faster...

Immediate questions to answer

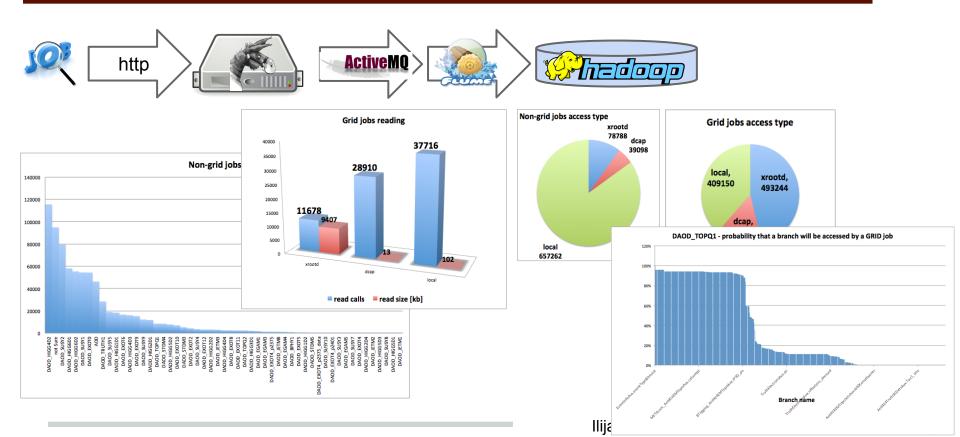
- is derivation production successful?
- do people run private filtering on AODs?
- how much private production the users run on their own?
- do majority of users use DAODs?
- does a small subset of users consume most of the cpus for analysis which is not in our computing model?
- how many cpus are needed to make 95% of users happy i.e. to run analysis on DAODs?
- how many users would like to run parallel or complex jobs (eg, high memory, task chains...)?
- is the current system (PanDA) good enough to give a high throughput to DAOD analysis and prevent the users running non-standard jobs to take over the resources?

A network weather service for ATLAS

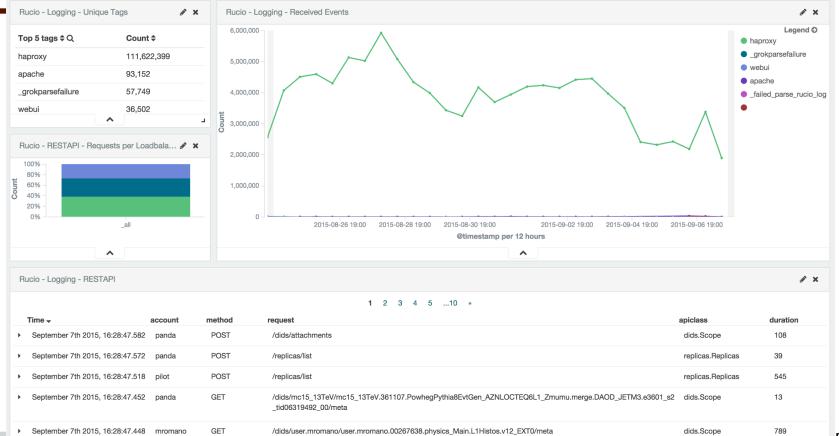
We will use ES as a Network weather service.


Data collection and warehousing

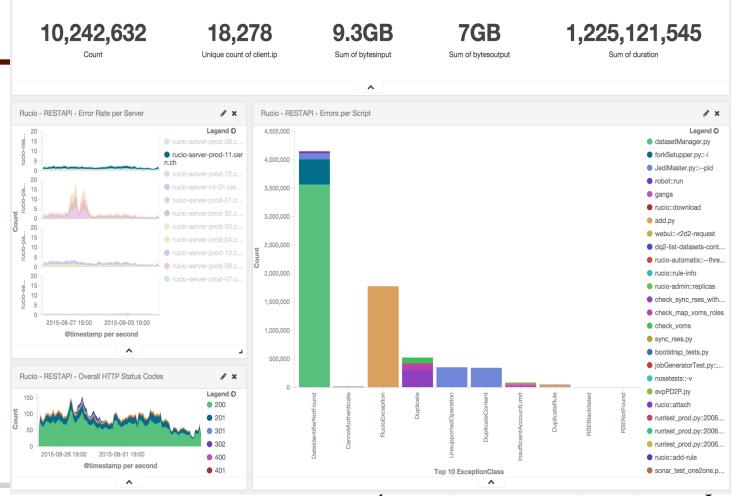
- throughput, latencies, and packet loss data come from OSG network datastore, Flum-ed from AMQ
- in-line prediction of future network performance
- FAX cost data already in Hadoop, will be indexed too


Serving the data:

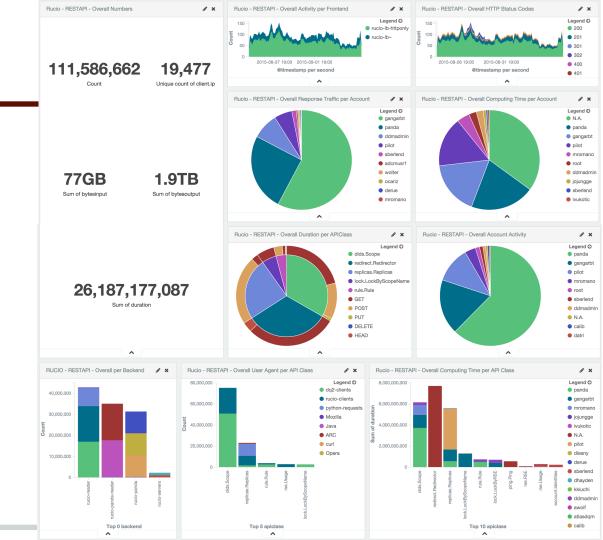
- very simple REST interface
- very simple python API
- ES should be able to deliver searches in <100ms @ 100Hz


File formats popularity

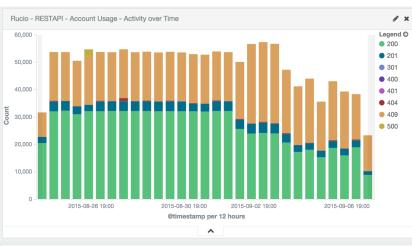
xAOD accesses analysis



Rucio logging



11110 VUINOLIO, OULODOLI OL 2010, DOUNDI, MOTILOLIONO



Rucio Account Activity

Rucio Account Usage

Rucio - RESTAPI - Account Usage - Resources

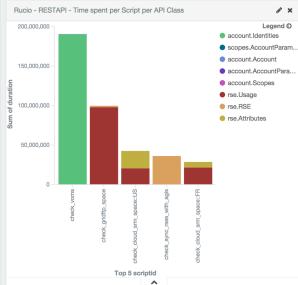
Export: Raw 🕹 Formatted 🛓

/ X

.

9 Unique count of client.ip

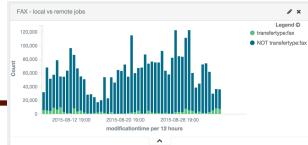
669.8MB


2.3GB Sum of bytesoutput

573,202,003

Sum of duration

Nuclo - NESTAFT - Account o	no - RESTAPI - Account Usage - Resources								
Top 10 request ≎ Q	Top 0 scriptid \$ Q	Count ≎	Sum of duration	Sum of bytesoutput	Sum of bytesinput				
/accounts/pilot/identities	check_map_voms_roles	24,145	1,306,217	15.4MB	11.2MB				
/accounts/phys- higgs/identities	check_map_voms_roles	15,082	694,607	9.5MB	7MB				
/accounts/perf- muons/identities	check_map_voms_roles	11,786	543,156	7.6MB	5.6MB				
/replicas/list	monitor_client::-s	6,229	3,316,796	34MB	35.9MB				
/replicas/list	rucio::list-file-replicas	6	932	4.8KB	2.5KB				
/replicas/list	nosetests::-v	2	184	10.6KB	808B				
/replicas/list	rucio::list-dataset- replicas	1	133	25.7KB	480B				
/accounts/phys-hi/identities	check_map_voms_roles	5,587	292,116	3.6MB	2.6MB				
/accounts/phys- gener/identities	check_map_voms_roles	5,285	285,139	3.3MB	2.5MB				
/accounts/perf- flavtag/identities	check_map_voms_roles	4,682	244,070	3MB	2.2MB				

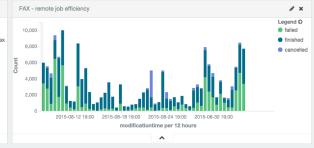

~

ø ×

-

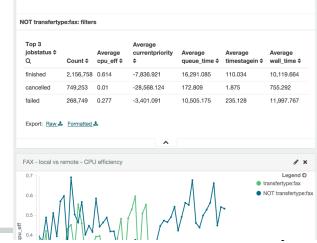
FAX overflow monitoring

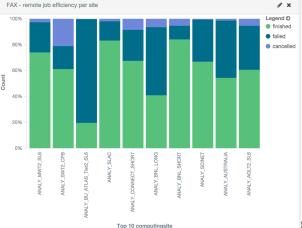
FAX - local vs remote - important parameters

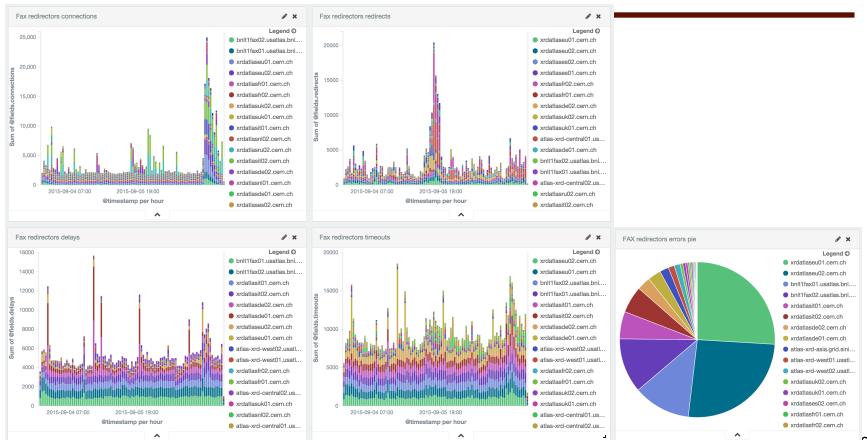

/ ×


∕ ×

Legend O


	Top 3 jobstatus ≎ Q	Count ≎	Average cpu_eff ≎	Average currentpriority \$	Average queue_time \$	Average timestagein \$	Average wall_time \$
	finished	104,726	0.437	-2,234.181	5,264.464	729.338	9,378.445
	failed	61,138	0.06	-1,308.578	2,863.969	665.158	4,172.507
	cancelled	10,348	0.012	-4,516.565	117.616	78.485	1,002.895





- -

FAX redirector network monitoring

Conclusions

The new stack of Big Data tools (Hadoop, Flume, Sqoop, Logstash, pig, ES, Kibana) provide great platform for ATLAS ADC analytics tasks:

- horizontally scalable
- performant
- simple to develop for
- easy to use for an analyzer
- fast to make custom dashboards, GUIs
- can be used as a full search service