

GEORGIAN TECHNICAL UNIVERSITY

Simulation Loop between CAD systems, Geant4 and GeoModel: Implementation and Results

Niko TSUTSKIRIDZE

Responsible Chair: DS, Professor Alexander SHARMAZANASHVILI

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, CERN

02/10/2015

Tasks for Reconstruction / Simulation

- Reconstruction and Simulation providing data necessary for Physics analyses
- Simulation generates theoretical events
- Purpose of the Reconstruction is to derive the properties of the produced particles from the information recorded by all subdetectors

Problem:

Difference between Data vs. Monte Carlo may be caused by Geometric Discrepancies

Reasons:

- Discrepancies between G4 and As-built detector Geometry
- Simulation software infrastructure quality

Main Goal:

- To determine Is there inaccuracy or not in simulation software infrastructure
- if yes, to investigate where the inaccuracy comes from

Toolkit for the simulation

Geant4 – Toolkit for the simulation of the passage of particles through matter

GeoModel – Toolkit to describe detector geometries

AGDD – Toolkit for ATLAS generic detector description

Virtual Point 1 (VP1) – Interactive 3D event display for the ATLAS experiment

Development of Simulation Loop

CATIA – CAD System. We use CATIA for investigation of ATLAS detector geometry

SmarTeam – Official engineering database at CERN

CDD – CERN Drawing Directory

02/10/2015

Investigation of Quality of Simulation Infrastructure

For ATLAS Detector components inaccuracies caused by transactions in the loop should be investigated:

- Checking of dimensions inaccuracies
- Checking of Forms inaccuracies
- Checking of Positioning inaccuracies

For this Purpose Test Examples for checking have to be selected

1st Step: Separation of unique cases of ATLAS detector geometry

1st Step: Separation of unique cases of ATLAS detector geometry

Finally, 6 classes have been received:

ead	Geometrics Primitives	19	Total·		
olume	Typical Joining	13	58		
Muc	Combined Objects	26			
umes	Geometrics Primitives	3	Total:		
ive Voli	Typical Joining	16	26		
Act	Combined Objects	7			

Thus, total number of cases are 84 Examples:

02/10/2015

Ways of programming of selected geometry cases have been considered according to exiting methods in AGDD/XML and GeoModel:

As a result following number of programming cases have been separated:

		Geo Cases	Prog. Cases	
Geometrics Primitives		17	3' 871	
XML	Typical Joining	8	446	
Combined Objects		23	5′ 215	
	Total:	48	9′ 532	
del	Geometrics Primitives	3	589	Total:
oMo	Typical Joining	16	4′ 190	15' 675
Combined Objects		7	1' 364	13 073
	Total:	26	6′ 143	

<u>Criteria #1:</u> Separate programming cases with Arbitrary polygon method from others. because of:

- 1) Arbitrary Polygon method permits to create volume in final position by only Z displacement
- 2) Only rotation on Z axes is needed
- 3) Number of necessary Boolean operation is minimal

Example:

<u>Criteria #2:</u> Minimization of number of used methods. Ensure:

- 1) Compactness of code
- 2) Reduce number of received clashes, contacts and inaccuracies of positioning
- 3) Better performance by reducing number of regions for consideration during the tracking

Criteria #3: Sameness of used methods. Because of:

- 1) Brings same geometry
- Difference in performance is negligible 2)
 - 1) Criteria #3.1: Similarity of Method and Geometry

Icositetrahedronal Prism with Cuts

Cube	Pyramid
Symmetric	Symmetric
Move	Move
Subtraction	Subtraction
Move	Move
Subtraction	Subtraction
Arbitrary	Arbitrary
Subtraction	Subtraction
Tube	Tube
Move	Move
Subtraction	Subtraction
Cube	Cube
Move	Move
Subtraction	Subtraction
Tube	Tube
Move	Move
Subtraction	Subtraction

Example:

Criteria #4: Similarity of code Structures

Example:

Icositetrahedronal Prism with Cuts

Cube Symmetric Move Subtraction Move Subtraction Arbitrary Subtraction Tube Move Subtraction Cube Move Subtraction Tube Move Subtraction

Pyramid Symmetric Move Subtraction Move Subtraction Arbitrary Subtraction Tube Move Subtraction Cube Move Subtraction Tube Move Subtraction

For each geometry case programming cases have been selected according to above mentioned criteria.

As a result:

		Number of Cases	
	Geometrics Primitives	8	
XML	Typical Joining	17	
	Combined Objects	33	
	Total:	58	
<u> </u>	Geometrics Primitives	3	Total:
lod	Turical laining	10	
		ΙΖ	78
Ge	Combined Objects	5	
	Total:	20	

78 unique test examples have been separated:

02/10/2015

Testing of Simulation Infrastructure

#	TestExample N	Inaccuracies	Comment	27	27	Yes	Maximal Inaccuracy 0.12 mm	53	53	No	
1	1	Yes	Maximal Inaccuracy 0.23 mm	28	28	Yes	Maximal Inaccuracy 0.12 mm	54	54	No	
2	2	Ves	Maximal Inaccuracy 0.03 mm	29	29	Yes	Maximal Inaccuracy 0.05 mm	55	55	Yes	Maximal Inaccuracy 0.08 mm
3	3	No		30	30	Yes	Maximal Inaccuracy 0.03 mm	56	56	Yes	Maximal Inaccuracy 0.03 mm
4	4	Yes	Maximal Inaccuracy 0.51 mm	31	31	Yes	Maximal Inaccuracy 0.03 mm	57	57		Clash 0.29 mm
5	5	No		32	32	Yes	Maximal Inaccuracy 0.06 mm	58	58	No	
6	6	Yes	Maximal Inaccuracy 0.2 mm	33	33	Yes	Maximal Inaccuracy 0.06 mm	59	59	No	
7	7	Yes	Maximal Inaccuracy 0.18 mm	34	34	Yes	Maximal Inaccuracy 0.01 mm	60	60	No	
8	8	Yes	Maximal Inaccuracy 0.01 mm	35	35	Yes	Maximal Inaccuracy 0.01 mm	61	61	No	
9	9	Yes	Maximal Inaccuracy 0.01 mm	36	36	Yes	Maximal Inaccuracy 0.01 mm	62	62	No	
10	10	Yes	Maximal Inaccuracy 0.03 mm	37	37	Yes	Maximal Inaccuracy 1.52 mm	63	63	Yes	Maximal Inaccuracy 0.12 mm
11	11	Yes	Maximal Inaccuracy 0.09 mm	38	38	Yes	Maximal Inaccuracy 0.03 mm	64	65	No	
12	12	Yes	Maximal Inaccuracy 0.09 mm	39	39	Yes	Maximal Inaccuracy 0.04 mm	65	66	Yes	Maximal Inaccuracy 0.01 mm
13	13	Yes	Maximal Inaccuracy 0.04 mm	40	40	Ves	Maximal Inaccuracy 0.14 mm	66	67	No	
14	14	Yes	Maximal Inaccuracy 0.05 mm	40	40	Ves	Maximal Inaccuracy 0.14 mm	67	68	No	
15	15	Yes	Maximal Inaccuracy 0.01 mm	12	/2	Ves	Maximal Inaccuracy 0.08 mm	68	69	No	
16	16	Yes	Maximal Inaccuracy 0.03 mm	42	42	No	Waximal maccuracy 0.00 min	69	70	No	
17	17	Yes	Maximal Inaccuracy 0.04 mm	43	43	Vos	Maximal Inaccuracy 0.01 mm	70	70	Voc	Maximal Inaccuracy 0.28 mm
18	18	Yes	Maximal Inaccuracy 0.19 mm	44	44	Yes	Maximal Inaccuracy 0.01 mm	70	71	No	
19	19	Yes	Maximal Inaccuracy 0.06 mm	45	45	Yes	Maximal Inaccuracy 0.01 mm	/1	72	NO	
20	20	Yes	Maximal Inaccuracy 0.15 mm	46	46	Yes	Maximal Inaccuracy 0.07 mm	12	/3	No	
21	21	No		47	47	No		73	74	No	
22	22	Yes	Maximal Inaccuracy 0.03 mm	48	48	No		74	75	Yes	Clash 0.89 mm
23	23	Yes	Maximal Inaccuracy 0.22 mm	49	49	Yes	Maximal Inaccuracy 0.12 mm	75	76	Yes	Clash 2.27 mm
24	24	Yes	Maximal Inaccuracy 0.06 mm	50	50	No		76	77	Yes	Clash 0.04 mm
25	25	Yes	Maximal Inaccuracy 0.18 mm	51	51	Yes	Maximal Inaccuracy 1.05 mm	77	78	No	
26	26	Yes	Maximal Inaccuracy 0.19 mm	52	52	No		78	79	No	

Test Example of Analysis

<box material="Aluminium" name="Box1" x_y_2="500.; 3240.; 290."></box>		Cube
<pre><box material="Aluminium" name="Box2" x_1_2="480.; 3300.; 270."></box> <tubs material="Aluminium" name="Tube1" nbphi="32" rio="" z="0.; 544.5; 300."></tubs></pre>		Cube
	T1	Subtraction
<subtraction name="TestExampleN26"></subtraction>		Tube
<pre><pre><pre><pre>>>>>>>>>>>>>>>>>>>>></pre></pre></pre></pre>	т2	Move
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	тЗ	Subtraction
<pre><posxyz rot=" 0. ; 0. ; 0. " volume="Tube1" x_y_z=" 0. ; -2100. ; 0. "></posxyz></pre>	т4	Move
	т5	Subtraction
<composition name="ECT Toroids"></composition>	Move	
<pre><posxyz rot=" 0.; 0.; -22.5 " volume="TestExampleN26" x_y_z=" -2750. ; -6792. ; 9540."></posxyz> </pre>	Rotation	

All units are in millimeters

Test Example of Analysis

		CATIA	Geant4	Δ
A	X	-1946.37	-1946.48	0.11
	у	-4851.85	-4852.04	0.19
	Ζ	9685	9685	0
	X	-1946.36	-1946.47	0.11
A1	Y	-4851.85	-4852.04	0.19
	Ζ	9395	9395	0
	x	-3553.64	-3553.69	0.05
В	у	-8732.15	-8732.22	0.07
	Ζ	9685	9685	0
	x	-3553.64	-3553.69	0.05
B1	у	-8732.15	-8732.22	0.07
	Ζ	9395	9395	0
R1		544.5	544.31	0.19
R2		544.5	544.6	-0.1
R3		544.5	544.31	0.19
R4 544.5		544.5	544.6	-0.1
Volur	ne	0.049	0.049	0

Here are positioning (A, A1, B, B1) and form (R1, R2, R3, R4) inaccuracies (Δ)

Side B

R3

R₄

All units are in millimeters

B

Case Study #01: Volume In the Axes Origin (without T1/T3/T5/T6/T7)

<box name="Box1" material="Aluminium" X_Y_Z="500.; 3240.; 290." />
<box name="Box2" material="Aluminium" X_Y_Z="480.; 3300.; 270." />
<tubs name="Tube1" material="Aluminium" Rio_Z="0.; 544.5; 300." nbPhi="32" />

<compositio< th=""><th>n name="TestExam</th><th>mpleN26" ></th></compositio<>	n name="TestExam	mpleN26" >
<posxyz< td=""><td>volume="Box1"</td><td>X_Y_Z=" 0; 0. ; 0. " rot=" 0. ; 0. ; 0. "/></td></posxyz<>	volume="Box1"	X_Y_Z=" 0; 0. ; 0. " rot=" 0. ; 0. ; 0. "/>
<posxyz< td=""><td>volume="Box2"</td><td>X_Y_Z=" 0; 0. ; 0. " rot=" 0. ; 0. ; 0. "/></td></posxyz<>	volume="Box2"	X_Y_Z=" 0; 0. ; 0. " rot=" 0. ; 0. ; 0. "/>
<posxyz< td=""><td>volume="Tube1"</td><td>X_Y_Z=" 0. ; 2100. ; 0. " rot=" 0. ; 0. ; 0. "/></td></posxyz<>	volume="Tube1"	X_Y_Z=" 0. ; 2100. ; 0. " rot=" 0. ; 0. ; 0. "/>
<posxyz< td=""><td>volume="Tube1"</td><td>X_Y_Z=" 0. ; -2100. ; 0. " rot=" 0. ; 0. ; 0. "/></td></posxyz<>	volume="Tube1"	X_Y_Z=" 0. ; -2100. ; 0. " rot=" 0. ; 0. ; 0. "/>
<td>.on></td> <td></td>	.on>	

<composition name="ECT Toroids" >

volume="TestExampleN26" X_Y_Z=" 0. ; 0. ; 0." rot=" 0.; 0.; 0. " />

		GeoM Δ ₁	G-4 Δ ₂	Total ∆
	x	0	0	0
А	у	0	-0.1	-0.1
	z	0	0	0
	x	0	0	0
A_1	у	0	-0.1	-0.1
	z	0	0	0
	x	0	0	0
В	у	0	0.1	0.1
	z	0	0	0
	x	0	0	0
B_1	у	0	0.1	0.1
	z	0	0	0
R1		0	-0.1	-0.1
R2		0	-0.1	-0.1
R3		0	-0.1	-0.1
R4		0	-0.1	-0.1
Volum	e	0	0	0

- Positioning and form inaccuracies for tube are caused by move operation of Geant4 (G-4/ $\Delta_2)$

All units are in millimeters

Case Study #02: Volume In the Axes Origin (without T6/T7)

<subtraction name="TestExampleN26" >

<composition name="ECT_Toroids" >

<posXYZ volume="TestExampleN26" X_Y_Z=" 0. ; 0. ; 0." rot=" 0.; 0.; 0. " />
</composition>

		GeoM Δ ₁	G-4 Δ ₂	Total ∆
	x	0.03	0	0.03
А	у	0.02	0.2	0.22
	z	0	0	0
	x	0.03	0	0.03
A_1	у	0.02	0.2	0.22
	z	0	0	0
	x	0.03	0	0.03
В	у	-0.02	0.1	0.08
	z	0	0	0
	x	0.03	0	0.03
B_1	у	-0.02	0.1	0.08
	z	0	0	0
R1		0	-0.19	-0.19
R2		0	0.1	0.1
R3		0	-0.19	-0.19
R4		0	0.1	0.1
Volum	е	0	0	0

- Positioning inaccuracies are caused by subtraction operation of GeoModel (GeoM/ Δ_1)
- Positioning and form inaccuracies are caused by subtraction operation of Geant4 (G-4/ Δ_2)

Case Study #03: Volume In the Axes Origin (without T6)

		GeoM Δ ₁	G-4 Δ ₂	Total ∆
	x	0.05	0.09	0.14
А	у	0.01	0.23	0.24
	z	0	0	0
	x	0.05	0.09	0.14
A ₁	у	0.01	0.23	0.24
	z	0	0	0
	x	0.01	0.01	0.02
В	у	-0.03	0.02	-0.01
	z	0	0	0
	x	0.01	0.01	0.02
B ₁	у	-0.03	0.02	-0.01
	z	0	0	0
	R1	0	-0.24	-0.24
	R2	0	0.02	0.02
	R3	0	-0.24	-0.24
	R4	0	0.02	0.02
Volum	Volume		0	0

<box name="Box1" material="Aluminium" X_Y_Z="500.; 3240.; 290." /><box name="Box2" material="Aluminium" X_Y_Z="480.; 3300.; 270." /><tubs name="Tube1" material="Aluminium" Rio_Z="0.; 544.5; 300." nbPhi="32" />

<subtraction name="TestExampleN26" >

<composition name="ECT_Toroids" >

<posXYZ volume="TestExampleN26" X_Y_Z=" 0. ; 0. ; 0." rot=" 0.; 0.; -22.5 " />
</composition>

- Positioning inaccuracies are caused by rotation operation of GeoModel (GeoM/ Δ_1)
- Positioning and form inaccuracies are caused by rotation operation of Geant4 (G-4/ Δ_2)

```
All units are in millimeters
```

Case Study #04: Volume without Rotation (without T7)

<box< th=""><th>name="Box1"</th><th>material="Aluminium"</th><th>X_Y_Z="500.; 3240.; 290." /></th></box<>	name="Box1"	material="Aluminium"	X_Y_Z="500.; 3240.; 290." />
<box< td=""><td>name="Box2"</td><td><pre>material="Aluminium"</pre></td><td>X_Y_Z="480.; 3300.; 270." /></td></box<>	name="Box2"	<pre>material="Aluminium"</pre>	X_Y_Z="480.; 3300.; 270." />
<tubs< td=""><td>name="Tube1"</td><td>material="Aluminium"</td><td>Rio_Z="0.; 544.5; 300." nbPhi="32" /></td></tubs<>	name="Tube1"	material="Aluminium"	Rio_Z="0.; 544.5; 300." nbPhi="32" />

<subtraction name="TestExampleN26" >

<composition name="ECT_Toroids" > <posXY2 volume="TestExampleN26" X_Y_Z=" -2750. ; -6792. ; 9540." rot=" 0.; 0.; 0. " /> </composition>

		GeoM Δ ₁	G-4 Δ ₂	Total ∆
А	x	0.03	0.01	0.04
	у	0.02	0.2	0.22
	z.	0	0	0
A ₁	x	0.03	0.01	0.04
	у	0.02	0.2	0.22
	z	0	0	0
В	x	0.03	0	0.03
	у	-0.03	0.1	0.07
	z	0	0	0
B ₁	x	0.03	0	0.03
	у	-0.03	0.1	0.07
	z	0	0	0
	R1	0.01	-0.2	-0.19
	R2	-0.01	0.1	0.09
	R3	0.01	-0.2	-0.19
	R4	-0.01	0.1	0.09
Volume		0	0	0

- Positioning and form inaccuracies are caused by move operation of GeoModel (GeoM/ Δ_1)
- Positioning and form inaccuracies are caused by move operation of Geant4 (G-4/ Δ_2)

```
All units are in millimeters
```

Final Results of Test Example

- 1. Positioning (Δ y=0.1 mm) and form (Δ r=0.1 mm) inaccuracies for cylinder are caused by move transaction along y axis in Geant4 (Case Study #01)
- 2. 0.1 mm inaccuracies are repeatable which might be computational errors (Case Study #01)
- 3. Positioning (Δ y=0.1 mm) and form (Δ r=0.09 mm) inaccuracies are caused by Subtraction operation in Geant4 (Case Study #02)
- 4. Positioning ($\Delta x=0.03$ mm, $\Delta y=0.02$ mm) inaccuracies are caused by Subtraction operation in GeoModel (Case Study #02)
- 5. Positioning ($\Delta x=0.09$ mm, $\Delta y=0.03$ mm) and form ($\Delta r=0.05$ mm) inaccuracies are caused by Rotation operation toward z axis (22.5°) in Geant4 (Case Study #03)
- 6. Positioning ($\Delta x=0.02$ mm, $\Delta y=0.01$ mm) inaccuracies are caused by Rotation operation toward z axis (22.5°) in GeoModel (Case Study #03)
- 7. Positioning ($\Delta x=0.01$ mm) and form ($\Delta r=0.01$ mm) inaccuracies are caused by Move operation along x, y, z axes in Geant4 (Case Study #04)
- 8. Positioning (Δy =0.01 mm) and form (Δr =0.01 mm) inaccuracies are caused by Move operation along x, y, z axes in Geant4 (Case Study #04)

Conclusion

Thank you for your attention

niko.tsutskiridze@cern.ch

02/10/2015