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Introduction

The task of heterogeneous resources
management is one of the most difficult and
important tasks today.

Administrators should set resource sharing
policies that will meet different requirements of
different groups of users.

Users want to compute their tasks fast while
organizations want their resources to be
utilized efficiently.

Traditional schedulers do not allow
administrator to efficiently solve these problems
in that way.



Introduction

» Users run different applications with different
scalability.

» They can use different libraries which have
different performance.

» Tasks of the same application can use diffenet
modules and vary greatly in requirements for
computational hardware.
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Approaches
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Classical management system. Dynamic
reallocation.

No management system. Maintenance.
Single system image. Fault tolerance.
Cloud. Overheads.

Other approaches.



Traditional approach
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Traditional approach

Implements the classical scheme (Portable
Batch system).

Several implementations (TORQUE, PBS
Professional, etc).

It usually does not monitor dynamic resource
load.

Resource reservation can be changed only by
user or administrator.

Scarce accounting information.



New approach
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New approach

Dynamic resource reallocation.

Profiling, detailed accounting and monitoring.
Flexible resource reservation.

Predictions module.

User rating.

Native API.

Modules can be used within existing PBS.
Small overheads.

Especially beneficial in case of underload or
overload.



New API

The described system is designed for
applications that use traditional APlIs.
Effective solution is a new API.

Such API implies tight cooperation with the
scheduler.

Dynamic resource reallocation could solve the
resource utilization problem.

API implies step by step resource allocation up
to allowable maximum with detailed
monitoring.

A special algorithm is used in order to
orchestrate the nodes of the cluster for efficient
network communication.



Conclusions

Resource management for scientific
computations sometimes can be challenging.
Dynamic resource reallocation could lead to
effective resource utilization.

Scheduling applications can be done using the
described approach.

Transition to the new APl can take time, but it

could be considered as a way to improve
utilization of a heterogeneous complex.



Questions

Thank you!



	Introduction
	Examples
	Approaches
	Traditional approach
	New approach
	New API
	Conclusions

