Resource and task management
tools for physics applications

A.V. Bogdanov bogdanov@csa.ru
A.B. Degtyarev deg@csa.ru
V.Yu. Gaiduchok gajduchok@cc.spbu.ru
[.G. Gankevich igankevich@cc.spbu.ru
V.V. Korkhov vladimir@csa.ru
N.V. Yuzhanin yuzhanin@cc.spbu.ru

NEC'2015



Agenda

Introduction
Examples
Approaches
Traditional approach
New approach

New API

Conclusions



Introduction

The task of heterogeneous resources
management is one of the most difficult and
important tasks today.

Administrators should set resource sharing
policies that will meet different requirements of
different groups of users.

Users want to compute their tasks fast while
organizations want their resources to be
utilized efficiently.

Traditional schedulers do not allow
administrator to efficiently solve these problems
in that way.



Introduction

» Users run different applications with different
scalability.

» They can use different libraries which have
different performance.

» Tasks of the same application can use diffenet
modules and vary greatly in requirements for
computational hardware.

GROMACS -

Open\VFOAM



Examples

Time, sec

3000 v

T T
—>¢— GROMACS case 1
—~A— GROMACS case 2
GROMACS case 3
2500 —l— Gaussian case 1

—+— Crystal case 1
2000 \k

-
o
o
=]

1000 \‘\‘-——I-.

—i———aa—aa—a—u—a

0 i LSS ﬁé—# #‘7

0 50 100 150 200 250 300 350 400
Cores

Application tests



Examples

12000

11500

11000

GFLOPS

10500

10000

Performance

9500

9000

—>¢— Matrix 100000x100000

)

~.

d

N

/

/

/

/

256 512 1024 2048

NB parameter

GPGPU LINPACK benchmark



Examples

11500
A
11000
—o— D
)

» 10500 =
0 ‘
S c%?/\/ \\\
© 10000

9500

Performance.

9000 | —+— CUDA DGEMM SPLIT=0.5

CUDA DGEMM SPLIT=0.6
—&— CUDADGEMM SPLIT=0.7
CUDA DGEMM SPLIT=0.8
8500 - —5— CUDA DGEMM SPLIT=0.9

—@— CUDA DGEMM SPLIT=1.0
1

05 0.6 0.7 0.8
CUDA DTRSM SPLIT

GPGPU LINPACK benchmark



Examples

80

70

Time, sec
w ey (4] (2]
o o o o

n
o

10

T
—>— CPU 24 cores (single precision)
—A— CPU 24 cores (dguble precision)

0 5000 10000 15000 20000 25000
Matrix size

MATLAB task



Examples

4500 ‘ I ‘ I ‘ ‘ ‘ ‘
—+— 1 GPU (single precision)
4000 - —>¢— 2 GPU (single precision) X
—~— 1 GPU (double precision) e~ N
2 GPU (double precision) /
3500
93000
@)
T
2500
g
ézooo ' ——tt + k. A
8
& 1500
1000
500 /
1024 4096 16384 65536 262144 1.04858e+06 4.1943e+06 1.67772e+07

Matrix size

Nbody test



Examples

50000

45000

40000

35000

30000

Mbit/sec

25000

Speed

20000

15000

10000

5000

—>¢— Cluster

1- IIEthernet
| —A— Cluster 1 - Infiniband (IPolB)

Cluster 1 - Infiniband (RDMA)

| —+— Cluster 2 - Ehternet interface
—ll— Cluster 2 - Infiniband (IPolIB)

—&— Cluster 2 - Infiniband (RDMA)

|- —@— Cluster 3 - Ethernet interface
Cluster 3 - Infiniband (IPolB)

|- —S— Cluster 3 - Infiniband (RDMA)

interface

1024 32768
Message size, bytes

Networking tests

1.04858e+06

3.35544e+07



Approaches

v

v

v

v

v

Classical management system. Dynamic
reallocation.

No management system. Maintenance.
Single system image. Fault tolerance.
Cloud. Overheads.

Other approaches.



Traditional approach

Administrators

Control

Users
Jobs

A

@ver

A

/V

|

PBS MOM Jobs

I

0

omputational node

o L

Scheduler . AW
\JObS

Server node

Computational node

PBS scheme




Traditional approach

Implements the classical scheme (Portable
Batch system).

Several implementations (TORQUE, PBS
Professional, etc).

It usually does not monitor dynamic resource
load.

Resource reservation can be changed only by
user or administrator.

Scarce accounting information.



New approach

Users
Jobs

Y
Administrators — Server ”"‘JObS

><Computational node

Gl e

Server node Computational node

New approach based on PBS scheme



New approach

Dynamic resource reallocation.

Profiling, detailed accounting and monitoring.
Flexible resource reservation.

Predictions module.

User rating.

Native API.

Modules can be used within existing PBS.
Small overheads.

Especially beneficial in case of underload or
overload.



New API

The described system is designed for
applications that use traditional APlIs.
Effective solution is a new API.

Such API implies tight cooperation with the
scheduler.

Dynamic resource reallocation could solve the
resource utilization problem.

API implies step by step resource allocation up
to allowable maximum with detailed
monitoring.

A special algorithm is used in order to
orchestrate the nodes of the cluster for efficient
network communication.



Conclusions

Resource management for scientific
computations sometimes can be challenging.
Dynamic resource reallocation could lead to
effective resource utilization.

Scheduling applications can be done using the
described approach.

Transition to the new APl can take time, but it

could be considered as a way to improve
utilization of a heterogeneous complex.



Questions

Thank you!



	Introduction
	Examples
	Approaches
	Traditional approach
	New approach
	New API
	Conclusions

