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Tracking
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BM@N setup of 2018
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Why new tracking?

Previous version of tracking was based on transformation of global
coordinates {x, y} → { x√

x2+y2+z2
, y√

x2+y2+z2
}

On the big multiplicities it became slow.
Worked only with GEM hits
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General description of new Tracking

Based on cellular automaton
R. Frühwirth et all arXiv:1202.2761

In this paradigm cell is two connected hits on different stations
(straight line segment).
Works with Silicon hits and with GEM hits as a whole.
Will work with any types of hits based on the BmnHit class.
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General description of new Tracking

1
Silicon planes GEM planes
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 State 0 State 1

State 2

State 3 State 4 State 5 State 6 State 7

8

3
Silicon planes GEM planes

6

9

1 Stations scheme
2 Track hits and noise hits
3 All possible cells connected
4 Cells selection by their

slope
5 Different states of cells
6 Cells connection w.r.t. slope

difference (candidates
creation)

7 Candidates selection by
number of hits

8 Candidates selection by
shared hits (No common
hits!)

9 Refitted tracks
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Tracking quality. Input parameters

Generator: QGSM, ArPb (T = 3.2 GeV/n), minbias, 10k events
Magnetic field: B = 0 T, B = 0.59 T
Mean multiplicity: 130
Primary vertex: (0.5, -4.6, -2.3)
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Tracking quality. Efficiency

Reconstructable tracks (NMC): MC-track
with more then 3 points
Reconstructed tracks (Nrec): All
reconstructed tracks
Well tracks (Nwell): Reconstructed tracks
more then 60% of hits corresponded to
same MC-track
Wrong tracks (Nwrong): Reconstructed
tracks less then 60% of hits corresponded
to same MC-track
Split tracks (Nsplit): Reconstructed
tracks corresponded to same MC-track

Efficiency: Nwell−Nsplit

NMC
· 100%

Percent of ghosts: Nwrong

Nrec
· 100%

Percent of clones: Nsplit

Nrec
· 100%
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Tracking quality. Vertex

VertZ
Entries  8644

Mean  2.08−  

Std Dev    0.4996

4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5− 0
, cmzV

0

0.2

0.4

0.6

0.8

1

C
o

u
n

te
r

VertZ
Entries  8644

Mean  2.08−  

Std Dev    0.4996

 = 0.13 cm)σ = -2.24 cm, µGEM + Sil (

 = 0.27 cm)σ = -2.26 cm, µGEM only (
 = 0.0 TyB

VertZ
Entries  7370

Mean  2.172− 
Std Dev    0.4722

4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5− 0
, cmzV

0

0.2

0.4

0.6

0.8

1

C
o

u
n

te
r

VertZ
Entries  7370

Mean  2.172− 
Std Dev    0.4722

 = 0.08 cm)σ = -2.28 cm, µGEM + Sil (

 = 0.35 cm)σ = -2.35 cm, µGEM only (
 = 0.59 TyB

Primary vertex is reconstructed by method of
virtual planes

Use of silicon leads to a more precise
reconstruction of primary vertex Vp

Effect becomes significant when
reconstructing tracks in magnetic field

By [T] SILICON
On Off

0.0 64% 64%
0.59 54 % 49%
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Tracking quality. Momentum resolution

Use of silicon:
Allows one to obtain
unbiased estimate for all
values of momentum in a
wide range.
Improves momentum
resolution, especially at
high momenta.

S. Merts BM@N tracking. For the 2nd Collab. meeting 11 / 29



Tracking for DCH
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Dch residuals

Test of DCH on Monte Carlo:
The same tracking based on cell
automaton (with small
modifications).
Only tracks passed through
both chambers are taken into
account.
Mean efficiency is about 93%.
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Silicon Strip Detector (SSD)
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SSD tested geometries

SSD v18a SSD v18b SSD v18c

z-positions of stations.
v18a: {30, 40, 50, 60} cm
v18b: {30, 45, 60, 75} cm
v18c: {30, 50, 70, 90} cm

by Evgeny Lavrik.
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Geometry to test SSD

Possibility to work with SIL,
SSD and GEM hits in different
combinations added into
tracking.

Only Hit Producer is
implemented for SSD right
now (no realistic effects, no
fakes, etc.).

In the nearest future we plan
to port codes with realistic
effects implementation from
CbmRoot to BmnRoot.
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Tracking efficiency and vertex resolution
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The highest efficiency can be obtained with the shortest baseline
(v18a).
Vertex resolution is similar for all configurations.
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Quality assurance system for Λ0 reconstruction

based on tracking QA system
works in 3 modes:

MC_ONLY. It gives information about geometrical efficiency, Λ0

acceptance, ...
MC + RECO. It gives MC_ONLY information + efficiency of Λ0

reconstruction ...
EXP + RECO. It gives only set of distributions with reconstructed Λ0

...

saves results as html-report
easy to extend for other decays
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Quality assurance system for Λ0 reconstruction

BLUE: All Λ0 hyperons
RED: Reconstructable Λ0 -
each decay product has at
least 4 hits
GREEN: Eff = Rec. Λ0 /
All Λ0
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Tracking QA on experimental data
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BM@N and SRC, data collected in Ar/Kr run (RUN-7)

SRC:
One beam energy available for C-beam
More than half of the collected statistics
can be used for analysis

BM@N:
One beam energy available for Ar-beam
and three - for Kr-beam
Set of targets used C, Al, Cu, Sn, Pb
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Alignment

ALCOPACK (ALignment COrrection PACKage)
is developed as a part of BmnRoot framework
https://git.jinr.ru/nica/bmnroot/tree/dev

based on formalism of Millepede II
http://www.desy.de/~blobel

allows to include/exclude different planes of subdetectors

Generalized straight-line model of track:

uji = xj0 cosαi + tjx cosαi + yj0 sinαi + tjyz sinαi + ∆ui + (tx cosαi + ty sinαi)∆z
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Alignment

Chosen weights to prevent detector
shift:

w1
i = cosαi - shifts (x0)

w2
i = zi cosαi - shearings (tx)

w3
i = cosαi - shifts (y0)

w4
i = zi sinαi - shearings (ty)

w5
i = 1 - overall shift in Z

w6
i = zi - scaling in Z

Misaligned and aligned detector

70 Belotelov I., Lanyov A., Ososkov G.

detector planes to be rigid bodies, where the strip or wire pitch within the modules cannot be
changed, thus scalings in x and y are forbidden. The remaining external degrees of freedom
depend on the track model. Let us analyze some of them which we will use in further study.

First, let us suppose that only possible misalignment is parallel to the measured coordinate
x. For such a detector and track model an overall detector shift Dx and shearing Sxz are not
ˇxed.

The other interesting case is the track model including shifts in X and Z and rotations
around Z. This is a more or less realistic scenario for our detectors, since such a detector is
not sensitive to shifts in Y and the effect of rotations around X and Y is much smaller than
that around Z axis. For such a track model we should ˇx ˇve external degrees of freedom:
overall detector shifts Dx and Dz, shearing Sxz, scaling in Z and overall rotation around Z.

If we are measuring both x and y coordinates (i.e., our planes are rotated relative to each
other), then we also should ˇx overall shift Dy and shearing Syz.

Fig. 2. Examples of misaligned geometry

Plots in Fig. 2 illustrate the meaning of these unconstrained degrees of freedom. Figure 2, a
shows initial state of misaligned detector; Fig. 2, b is one of the possible solutions of internal
alignment. But the situation represented in Figs. 2, cÄe also corresponds to the minimum of
alignment functional. We have an inˇnite number of possible solutions and we need to be
able to choose the desired one. It could be done in several ways [6].

Let us assume that we know the position of some modules in our detector, e.g., from
survey measurements. Then we prefer to ˇx these modules and keep them at the same known
position.

In case the number of these modules is exactly equal to the number of unconstrained
degrees of freedom, in order to constraint our problem we need to add such a term to out
initial residual functional (i corresponds to the number of ˇxed modules):

ai = 0. (13)

In Blobel's notation it corresponds to keeping measurements in ˇxed planes during local
ˇts, but excluding corresponding alignment parameters ai from global ˇt. It allows us to
choose exactly one solution, which puts our functional to its minimum and globally aligns
the detector in respect to those ˇxed planes.

Also solutions but not desirable
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Vertex. Before and after alignment
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Vertex. GEM only vs. GEM + SIL
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Set: 200 kEvents
Beam: Ar
Target: Al
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Vertex. vs. N tracks
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nTracks is number
of tracks
participating in PV
reconstruction
Less multiplicity
gives higher
secondary vertises
nTracks cut reduces
background
significantly
nTracks cut doesn’t
affect on vertex
width for Al
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Vertex. vs. number of hits on track
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Momentum distribution vs. nHits cut
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More multiplicity gives less peak of
spectators.
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First look at data with Krypton beam
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Summary

BmnRoot framework is being developed by our group. It containes
different algorithms used for data decoding, hit producing (with
realistic effects), a package for alignment procedure (ALCOPACK),
instruments to operate with databases, data visualisation etc.
The proposed tracking successfully passed QA procedure with MC
input and was used for methodological studies with existing
experimental data.
Three possible configurations of SSD were cosidered. First
preliminary results were obtained. The work is in progress.
Useful tool to study two-particle decays with different data species
(MC, MC + RECO, REAL DATA) was developed.

Thank you!

S. Merts BM@N tracking. For the 2nd Collab. meeting 29 / 29


