Tracking for the BM@N Experiment and New Silicon Stations

Sergei Merts on behalf of software group
The second BM@N collaboration meeting
30/10/2018

BM@N

Outline

- Tracking
- Description of tracking procedure
- Tracking QA on Monte Carlo
- Silicon Strip Detector (SSD)
- SSD geometry
- QA system for Λ^{0}
- Feasibility study for SSD
- Tracking QA on experimental data
- Alignment
- Results for Ar-beam
- Results for Kr-beam

Tracking

BM@N

- Previous version of tracking was based on transformation of global coordinates $\{x, y\} \rightarrow\left\{\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}\right\}$
- On the big multiplicities it became slow.
- Worked only with GEM hits

BM@N

- Based on cellular automaton
R. Frühwirth et all arXiv:1202.2761
- In this paradigm cell is two connected hits on different stations (straight line segment).
- Works with Silicon hits and with GEM hits as a whole.
- Will work with any types of hits based on the BmnHit class.

BM@N

BM@N

- Generator: QGSM, $\operatorname{ArPb}(T=3.2 \mathrm{GeV} / \mathrm{n})$, minbias, 10 k events
- Magnetic field: $\mathrm{B}=0 \mathrm{~T}, \mathrm{~B}=0.59 \mathrm{~T}$
- Mean multiplicity: 130
- Primary vertex: (0.5, -4.6, -2.3)

BM@N

Tracking quality. Efficiency

- Reconstructable tracks ($N_{M C}$): MC-track with more then 3 points
- Reconstructed tracks ($N_{r e c}$): All reconstructed tracks
- Well tracks ($N_{\text {well }}$): Reconstructed tracks more then 60% of hits corresponded to same MC-track
- Wrong tracks ($N_{\text {wrong }}$): Reconstructed tracks less then 60% of hits corresponded to same MC-track
- Split tracks ($N_{\text {split }}$): Reconstructed tracks corresponded to same MC-track
- Efficiency: $\frac{N_{\text {well }}-N_{\text {split }}}{N_{M C}} \cdot 100 \%$
- Percent of ghosts: $\frac{N_{\text {wrong }}}{N_{\text {rec }}} \cdot 100 \%$
- Percent of clones: $\frac{N_{s p l i t}}{N_{\text {rec }}} \cdot 100 \%$

BM@N

Tracking quality. Vertex

- Primary vertex is reconstructed by method of virtual planes
- Use of silicon leads to a more precise reconstruction of primary vertex V_{p}

$B_{y}[\mathrm{~T}]$	SILICON	
	On	Off
0.0	64%	64%
0.59	54%	49%

- Effect becomes significant when reconstructing tracks in magnetic field

BM@N

Tracking quality. Momentum resolution

Use of silicon:

- Allows one to obtain unbiased estimate for all values of momentum in a wide range.
- Improves momentum resolution, especially at high momenta.

BM@N

Tracking for DCH

Test of DCH on Monte Carlo:

- The same tracking based on cell automaton (with small modifications).
- Only tracks passed through both chambers are taken into account.
- Mean efficiency is about 93%.

Silicon Strip Detector (SSD)

BM@N

BM@N

- Possibility to work with SIL, SSD and GEM hits in different combinations added into tracking.
- Only Hit Producer is implemented for SSD right now (no realistic effects, no fakes, etc.).
- In the nearest future we plan to port codes with realistic effects implementation from CbmRoot to BmnRoot.

BM@N

Tracking efficiency and vertex resolution

- The highest efficiency can be obtained with the shortest baseline (v18a).
- Vertex resolution is similar for all configurations.

BM@N

- based on tracking QA system
- works in 3 modes:
- MC_ONLY. It gives information about geometrical efficiency, Λ^{0} acceptance, ...
- MC + RECO. It gives MC_ONLY information + efficiency of Λ^{0} reconstruction ...
- EXP + RECO. It gives only set of distributions with reconstructed Λ^{0} ...
- saves results as html-report
- easy to extend for other decays

BM@N

Quality assurance system for Λ^{0} reconstruction

- BLUE: All Λ^{0} hyperons
- RED: Reconstructable Λ^{0} each decay product has at least 4 hits
- GREEN: Eff $=$ Rec. $\Lambda^{0} /$ All Λ^{0}

Tracking QA on experimental data

SRC:

- One beam energy available for C-beam
- More than half of the collected statistics can be used for analysis

BM@N:

- One beam energy available for Ar-beam and three - for Kr -beam
- Set of targets used C, Al, Cu, Sn, Pb

Projectile $\operatorname{Ar}(\mathrm{T}=3.2 \mathrm{GeV} / \mathrm{n})$

Total: 132.05 MEvs

Projectile $\mathrm{Kr}(\mathrm{T}=2.3 \mathrm{GeV} / \mathrm{n})$
Total: 4.93 MEvs

Projectile $\mathrm{Kr}(\mathrm{T}=2.6 \mathrm{GeV} / \mathrm{n})$
Total: 47.14 MEvs

Projectile $\mathrm{Kr}(\mathrm{T}=2.94 \mathrm{GeV} / \mathrm{n})$
Total: 2.37 MEvs

BM@N

Alignment

ALCOPACK (ALignment COrrection PACKage)

- is developed as a part of BmnRoot framework https://git.jinr.ru/nica/bmnroot/tree/dev
- based on formalism of Millepede II http://www.desy.de/~blobel
- allows to include/exclude different planes of subdetectors

Generalized straight-line model of track:

$$
u_{i}^{j}=x_{0}^{j} \cos \alpha_{i}+t_{x}^{j} \cos \alpha_{i}+y_{0}^{j} \sin \alpha_{i}+t_{y}^{j} z \sin \alpha_{i}+\Delta u_{i}+\left(t_{x} \cos \alpha_{i}+t_{y} \sin \alpha_{i}\right) \Delta z
$$

BM@N

Alignment

Chosen weights to prevent detector shift:

- $w_{i}^{1}=\cos \alpha_{i}$ - shifts $\left(x_{0}\right)$
- $w_{i}^{2}=z_{i} \cos \alpha_{i}$ - shearings $\left(t_{x}\right)$
- $w_{i}^{3}=\cos \alpha_{i}$ - shifts $\left(y_{0}\right)$
- $w_{i}^{4}=z_{i} \sin \alpha_{i}$ - shearings $\left(t_{y}\right)$
- $w_{i}^{5}=1$ - overall shift in Z
- $w_{i}^{6}=z_{i}$ - scaling in \mathbf{Z}

Misaligned and aligned detector

Also solutions but not desirable

BM@N

Vertex. Before and after alignment

BM@N

Vertex. GEM only vs. GEM + SIL

Parameters:

- Set: 200 kEvents
- Beam: Ar
- Target: Al

BM@N

Vertex. vs. N tracks

S. Merts

BM@N tracking. For the $2^{n d}$ Collab. meeting

BM@N

- Skip events if at least one track has nHits < cut
- nHits cut reduces background significantly
- Default value is nHits > 3

BM@N

Momentum distribution vs. nHits cut

S. Merts

BM@N

First look at data with Krypton beam

BM@N

Summary

- BmnRoot framework is being developed by our group. It containes different algorithms used for data decoding, hit producing (with realistic effects), a package for alignment procedure (ALCOPACK), instruments to operate with databases, data visualisation etc.
- The proposed tracking successfully passed QA procedure with MC input and was used for methodological studies with existing experimental data.
- Three possible configurations of SSD were cosidered. First preliminary results were obtained. The work is in progress.
- Useful tool to study two-particle decays with different data species (MC, MC + RECO, REAL DATA) was developed.

Thank you!

