Tracking for the BM@N Experiment and New Silicon Stations

• Tracking

- Description of tracking procedure
- Tracking QA on Monte Carlo
- Silicon Strip Detector (SSD)
 - SSD geometry
 - QA system for Λ^0
 - Feasibility study for SSD
- Tracking QA on experimental data
 - Alignment
 - Results for Ar-beam
 - Results for Kr-beam

Tracking

BM@N setup of 2018

- Previous version of tracking was based on transformation of global coordinates $\{x, y\} \rightarrow \{\frac{x}{\sqrt{x^2+y^2+z^2}}, \frac{y}{\sqrt{x^2+y^2+z^2}}\}$
- On the big multiplicities it became slow.
- Worked only with GEM hits

• Based on cellular automaton

R. Frühwirth et all arXiv:1202.2761

- In this paradigm cell is two connected hits on different stations (straight line segment).
- Works with Silicon hits and with GEM hits as a whole.
- Will work with any types of hits based on the BmnHit class.

BM@N

General description of new Tracking

- **1** Stations scheme
- 2 Track hits and noise hits
- 3 All possible cells connected
- Cells selection by their slope
- **5** Different states of cells
- 6 Cells connection w.r.t. slope difference (candidates creation)
- Candidates selection by number of hits
- Candidates selection by shared hits (No common hits!)
- ③ Refitted tracks

Tracking quality. Input parameters

- \bullet Generator: QGSM, ArPb (T = 3.2 GeV/n), minbias, 10k events
- Magnetic field: B = 0 T, B = 0.59 T
- Mean multiplicity: 130
- Primary vertex: (0.5, -4.6, -2.3)

BM@N

Tracking quality. Efficiency

- Reconstructable tracks (N_{MC}) : MC-track with more then 3 points
- Reconstructed tracks (N_{rec}): All reconstructed tracks
- Well tracks (N_{well}) : Reconstructed tracks more then 60% of hits corresponded to same MC-track
- Wrong tracks (N_{wrong}) : Reconstructed tracks less then 60% of hits corresponded to same MC-track
- Split tracks (N_{split}) : Reconstructed tracks corresponded to same MC-track

• Efficiency:
$$\frac{N_{well} - N_{split}}{N_{MC}} \cdot 100\%$$

- Percent of ghosts: $\frac{N_{wrong}}{N_{rec}} \cdot 100\%$
- Percent of clones: $\frac{N_{split}}{N_{rec}} \cdot 100\%$

S. Merts

BM@N

Tracking quality. Vertex

- Primary vertex is reconstructed by method of virtual planes
- Use of silicon leads to a more precise reconstruction of primary vertex V_p
- Effect becomes significant when reconstructing tracks in magnetic field

B_y [T]	SILICON	
	On	Off
0.0	64%	64%
0.59	54 %	49%

S. Merts

BM@N

Tracking quality. Momentum resolution

Use of silicon:

- Allows one to obtain unbiased estimate for all values of momentum in a wide range.
- Improves momentum resolution, especially at high momenta.

Tracking for DCH

Test of DCH on Monte Carlo:

- The same tracking based on cell automaton (with small modifications).
- Only tracks passed through both chambers are taken into account.
- Mean efficiency is about 93%.

Silicon Strip Detector (SSD)

SSD tested geometries

BM@N

Geometry to test SSD

- Possibility to work with SIL, SSD and GEM hits in different combinations added into tracking.
- Only Hit Producer is implemented for SSD right now (no realistic effects, no fakes, etc.).
- In the nearest future we plan to port codes with realistic effects implementation from CbmRoot to BmnRoot.

Tracking efficiency and vertex resolution

- The highest efficiency can be obtained with the shortest baseline (v18a).
- Vertex resolution is similar for all configurations.

S. Merts

- based on tracking QA system
- works in 3 modes:

BM@N

- MC_ONLY. It gives information about geometrical efficiency, Λ^0 acceptance, ...
- MC + RECO. It gives MC_ONLY information + efficiency of Λ^0 reconstruction ...
- **EXP** + **RECO.** It gives only set of distributions with reconstructed Λ^0 ...
- saves results as html-report
- easy to extend for other decays

Quality assurance system for Λ^0 reconstruction

• **BLUE:** All Λ^0 hyperons

- RED: Reconstructable Λ⁰ each decay product has at least 4 hits
- **GREEN:** Eff = Rec. $\Lambda^0 / All \Lambda^0$

Tracking QA on experimental data

BM@N and SRC, data collected in Ar/Kr run (RUN-7)

SRC:

- One beam energy available for C-beam
- More than half of the collected statistics can be used for analysis

BM@N:

- One beam energy available for Ar-beam and three for Kr-beam
- Set of targets used C, Al, Cu, Sn, Pb

AI (28.5 %) 37.69 MEvs

AI (47.6 %)

2.35 MEvs

ALCOPACK (ALignment COrrection PACKage)

- is developed as a part of BmnRoot framework https://git.jinr.ru/nica/bmnroot/tree/dev
- based on formalism of Millepede II http://www.desy.de/~blobel
- \bullet allows to include/exclude different planes of subdetectors

Generalized straight-line model of track:

$$u_i^j = x_0^j \cos \alpha_i + t_x^j \cos \alpha_i + y_0^j \sin \alpha_i + t_y^j z \sin \alpha_i + \Delta u_i + (t_x \cos \alpha_i + t_y \sin \alpha_i) \Delta z$$

Chosen weights to prevent detector shift:

Misaligned and aligned detector

Also solutions but not desirable

Vertex. Before and after alignment

Parameters:

- Set: 200 kEvents
- Beam: Ar
- Target: Al
 - S. Merts

Vertex. vs. N tracks

- nTracks is number of tracks participating in PV reconstruction
- Less multiplicity gives higher secondary vertises
- nTracks cut reduces background significantly
- nTracks cut doesn't affect on vertex width for Al

25 / 29

Vertex. vs. number of hits on track

- Skip events if at least one track has nHits < cut
- nHits cut reduces background significantly
- Default value is nHits > 3

Momentum distribution vs. nHits cut

• More multiplicity gives less peak of spectators.

- BmnRoot framework is being developed by our group. It containes different algorithms used for data decoding, hit producing (with realistic effects), a package for alignment procedure (ALCOPACK), instruments to operate with databases, data visualisation etc.
- The proposed tracking successfully passed QA procedure with MC input and was used for methodological studies with existing experimental data.
- Three possible configurations of SSD were cosidered. First preliminary results were obtained. The work is in progress.
- Useful tool to study two-particle decays with different data species (MC, MC + RECO, REAL DATA) was developed.

Thank you!

S. Merts