

Particle ID in recent run

Plotnikov V., Rumyantsev M, GEM tracking group.

Run7 configuration

ToF400 plane Tracker in magnetic field — 6 GEM detectors 163 x 45 cm² momentum reconstraction Tracker outside magnetic field – Catode Strip Chamber (CSC) 100 x 100 cm² for good matching extrapolated track and fake track cutting. TOF400 – for particle identification.

Target

T0 for the BM@N

Trigger types: Beam triger: BC1+antiVC+BC2 Interaction Triggers:

- BT+BD>3
- BT+Si>3
- BT+BD>3+Si>3

Scintillator: BC-400B with size of 14×10×0.8 mm PMT: MCP-PMT PP0365G Rise time: 200 ps Time resolution: 30 ps (C beam)

Idendification chain

- GEM tracks from tracking groop (STS are not includet)
- GEM track are extrapolated to the CSC plane and matched against the CSC hits.
- Successfule matched tracks are refitted with CSC hits
- GEM+CSC tracks are axtrapolated to the TOF400 planes and matched against the TOF400 hits.
- GEM+CSC tracks are extrapolated to the z=0 (target) point for length calculating.
- Use track information (Length and P/q) and TOF information calculate a mass of the particle.

Data set

Ar beam T=3,2 GeV/nucl. Spill ~ 2s during ~11 s. Magnetic field B_y =0,6 T

Target	Runs
C (2 mm)	4611-4628
Pb(2,5 mm)	4630-4647
AI (3,3 mm)	4649-4665
Cu(1,67 mm)	4669-4685
Sn (2,57 mm)	4687-4704

Data taking for 14 hours. Total number of triggers = 15 365 890.

Track matching

Residuals for refited GEM+CSC track extrapolated to TOF400

Cat for primary vertex (Target)

All targets are made in the form of a cylinder with a diameter of 3 cm

Cat for primary vertex is |X| > 2 cm and |Y-2,6| > 2cm

Only primary particles going from the target are reconstructed!

Preliminary result of identification

Proton Mass² = 0,894 + 0,081 GeV²/c⁴ (need to be 0,880 GeV²/c⁴) pion Mass² = 0,021 + 0,016 GeV²/c⁴ (need to be 0,019 GeV²/c⁴) Number of K+ ~ 900

Possibility of separation of He4 and d

Amplitude of clasters in CSC detector for He3 (blue line) and proton (red line) Amplitude of clasters in GEM detector for He3 (blue line) and proton (red line)

Thank you for your attention

Backup

BM@N Influence of INL of TDC adn Slewing correction of TOF400

BM@N Time resolution of ToF system (TOF400 + T0)

- Separate the Proton
- Calculate Ideal Time of Flight for proton
- · Histogram the difference of Ideal and measured time of flight
- Cat the momentum of protom p > 1.7 GeV/c

CSC efficiency, 4.4x4.4 cm²

• Efficiency more than 80% (on the average)

TOF-400 planes efficiency

Efficiency about 90%

A view of the front side of Si detector.

A view of the new BD prepared for run 2018