BM@N

Particle ID in recent run

Plotnikov V., Rumyantsev M, GEM tracking group.

BM@N

Run7 configuration

MRPC for the BM@N TOF400

Number of the MRPC	20 pce
Active area	$3.6 \mathrm{~m}^{2}$
Number of readut channels	1920

T0 for the BM@N

Trigger types:
Beam triger: BC1+antiVC+BC2 Interaction Triggers:

- $\mathrm{BT}+\mathrm{BD}>3$
- $\mathrm{BT}+\mathrm{Si}>3$
- $\mathrm{BT}+\mathrm{BD}>3+\mathrm{Si}>3$

Scintillator: BC-400B with size of $14 \times 10 \times 0.8 \mathrm{~mm}$
PMT: MCP-PMT PP0365G
Rise time: 200 ps
Time resolution: 30 ps (C beam)

Idendification chain

- GEM tracks from tracking groop (STS are not includet)
- GEM track are extrapolated to the CSC plane and matched against the CSC hits.
- Successfule matched tracks are refitted with CSC hits
- GEM+CSC tracks are axtrapolated to the TOF400 planes and matched against the TOF400 hits.
- GEM+CSC tracks are extrapolated to the z=0 (target) point for length calculating.
- Use track information (Length and P/q) and TOF information calculate a mass of the particle.

Data set

Ar beam $\mathrm{T}=3,2 \mathrm{GeV} /$ nucl. Spill $\sim 2 \mathrm{~s}$ during $\sim 11 \mathrm{~s}$. Magnetic field $\mathrm{B}_{\mathrm{y}}=0,6 \mathrm{~T}$

Target	Runs
$\mathrm{C}(2 \mathrm{~mm})$	$4611-4628$
$\mathrm{~Pb}(2,5 \mathrm{~mm})$	$4630-4647$
$\mathrm{Al}(3,3 \mathrm{~mm})$	$4649-4665$
$\mathrm{Cu}(1,67 \mathrm{~mm})$	$4669-4685$
$\mathrm{Sn}(2,57 \mathrm{~mm})$	$4687-4704$

Data taking for 14 hours. Total number of triggers = 15365890 .

Track matching

Residuals for GEM track
extrapolated to CSC chamber

Residuals for refited GEM+CSC track extrapolated to TOF400

BM@N

Cat for primary vertex (Target)

All targets are made in the form of a cylinder with a diameter of 3 cm

Cat for primary vertex is $|\mathrm{X}|>2 \mathrm{~cm}$ and $|\mathrm{Y}-2,6|>2 \mathrm{~cm}$
Only primary particles going from the target are reconstructed!

BM@N

Preliminary result of identification

Proton Mass ${ }^{2}=0,894+0,081 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ (need to be $0,880 \mathrm{GeV}^{2} / \mathrm{c}^{4}$) pion Mass ${ }^{2}=0,021+0,016 \mathrm{GeV}^{2} / \mathrm{c}^{4}\left(\right.$ need to be $\left.0,019 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$ Number of K+ ~ 900

BM@N
 Possibility of separation of He 4 and d

Amplitude of clasters in CSC detector for He 3 (blue line) and proton (red line)

Amplitude of clasters in GEM detector for He 3 (blue line) and proton (red line)

Thank you for your attention

BM@N

Backup

вм@N Influence of INL of TDC adn Slewing correction of TOF400

Without INL and Slewing correction.
Time resolution $\sim 350 \mathrm{ps}$

With INL and Slewing correction. Time resolution $\sim 100 \mathrm{ps}$.

BM@N Time resolution of ToF system (TOF400 + T0)

- Separate the Proton
- Calculate Ideal Time of Flight for proton
- Histogram the difference of Ideal and measured time of flight
- Cat the momentum of protom $\mathrm{p}>1.7 \mathrm{GeV} / \mathrm{c}$

BM@N

CSC efficiency, $4.4 \times 4.4 \mathrm{~cm}^{2}$

- Efficiency more than 80\% (on the average)

BM@N

TOF-400 planes efficiency

A view of the front side of Si detector.

A view of the new $B D$ prepared for run 2018

