

Status of Baryonic Matter at Nuclotron

BM@N

M.Kapishin

Complex NICA

Parameters of Nuclotron for BM@N experiment: E_{beam} = 1-6 GeV/u; *beams: from* p to Au; Intensity~10⁷ c⁻¹ (Au)

BM@N setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

M.Kapishin

BM@N experiment

• Central tracker (Si + GEM) inside analyzing magnet to reconstruct AA interactions

- Outer tracker (CSC, DCH) behind magnet to link central tracks to ToF detectors
- ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+e-

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm^2 and forward Si strip detectors for tracking
- ToF system, trigger detectors, hadron and EM calorimeters, outer tracker

Program:

- Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets Al, Cu, Sn, Pb
- \rightarrow Hyperon production measured in central tracker (Si + GEM)
- \rightarrow Charged particles and nuclear fragments identified with ToF
- \rightarrow Gamma and multi-gamma states identified in ECAL

+ analyze data from previous technical run with Carbon beam of 3.5 - 4.5 GeV/n

M.Kapishin

BM@N beam profile

M.Kapishin

Beam structure & pile-up suppression

BM@N

10

10

10

40

30

10

BC2

Low threshold in BC

M.Kapishin

BM@N set-up in Ar, Kr run, March 2018

CSC chamber

ToF-400 installation

BM@N experiment

BM@N

New detector components: 6 big GEMs, trigger detectors, 3 Si detectors, CSC chamber, full set of ToF detectors

BM@N setup behind magnet, 2018

M.Kapishin

GEM detectors for central BM@N tracker BM@N

Tests of GEM detector 163 x 45 cm²

Fragments of Ar beam in GEM-5 detector

GEM group, see talk of A.Maksymchuk

 7 detectors of 163 x 45 cm² are produced at CERN workshop

 one detector is defected, has to be repaired

M.Kapishin

M.Kapishin

Forward silicon strip detectors

Central tracker in Ar / Kr runs

Silicon detector group, see talk of N.Zamiatin

- 2-coordinate Si detector with strip pitch of 95/103 $\mu m,$ full size of 25 x 25 cm^2
- Detector combined from 4 sub-detectors arranged around beam
- + 2 smaller vertex detectors \rightarrow March 2018
- ► Precise 3D measurement of all major components of BM@N setup ! (A.Kolesnikov + firm)

Si-3 detector residual vs GEM+Si track ~ 86 µm GEM-1 detector residual vs GEM+Si track ~ 320 μm

GEM-1 track profile

Vertex reconstruction in Ar run

 Beam in Ar run ~1.8 cm higher in Y and has tail in X

► Compare with vertex in Carbon run in March 2017

BM@N

Vertex sigma along beam ~1.8 mm comparable with target thickness

Vertex in high multiplicity events

Si trigger performance in Ar and Kr runs

Beam scrapes upper part of Si trigger detector in Ar run

Si trigger detector profile, Kr run

BM@N

Si trigger detector

Adjusted beam position in Kr run

Barrel detector trigger performance in Ar and Kr runs

BD detector profile in Ar+Cu, GEANT4 simulation of δ -electrons

BD trigger detector profile, Kr run

Implementation of 4 mm Pb shielding inside BD cylinder diminished δ-electron rate

New Cathode Strip Chamber as Outer tracker

A.Vishnevsky + GEM team

C, Ar and Kr runs in March 2018: CSC chamber installed in front of ToF-400 to check its performance as Outer tracker for heavy ions

M.Kapishin

Link of GEM tracks to CSC and TOF-400 BM@N

ToF-400 and ToF-700 based on mRPC

BM@N

Electro-magnetic ECAL calorimeter

See talk of ECAL group, P.Alekseev

- ECAL collected data in short runs in position close to C, Ar and Kr beams
- Calibration is being performed: response to Z=1, 2 particles in modules close to beam + response to cosmic particles
- \rightarrow Aim to reconstruct states decaying to γ

MPD / CBM hadron ZDC calorimeter

resolve central /

CBM modules MPD modules

- Modern technics;
- Light yield ~x10 higher;
- **Detection of low energies;**
- Stable operation at high count rates;
- **Experience in operation for later MPD/CBM** experiments CBM module in BM@N
- **Motivated team**

MPD FHCAL modules

See talk of V.Panin

Cuts

|θ_{1,2}-30°|<6.5° |Δφ_{1,2}|<7.5°

|s,t,u|>2 (GeV/c)² P_{miss} >0.275 GeV/c

Trigger: T0 · T1 · T2 · TC1 · TC2

Signal rates for 14 days of data taking

Within LAND acceptance First SRC @ BMN run in March 2018

Formation of working groups

Hyperon reconstruction, simulation and analysis

A.Zinchenko, G.Pokatashkin, V.Vasendina, I.Roufanov, Yu.Gornaya +

Particle identification, simulation and analysis

Yu.Petukhov, M.Rumyantsev, V.Plotnikov, N.Kuzmine, V.Babkin, N.Voitishin +

Track reconstruction and simulation

S.Merts, P.Batyuk, A.Zinchenko, G.Pokatashkin, I.Gabdrahmanov, D.Baranov +

BMNROOT software development

K.Gertsenberger, S.Merts, P.Batyuk, D.Baranov, A.Moshkin, G.Pokatashkin, A.Zinchenko + **Data quality analysis**

P.Batyuk, G.Pokatashkin, I.Gabdrahmanov, I.Roufanov, S.Sedykh +

Detector simulation and reconstruction

S.Merts, P.Batyuk, A.Zinchenko, D.Baranov, E.Litvinenko +

ECAL: gamma data analysis and simulation

S.Afanasiev, A.Stavinsky, H.Abramyan + groups

SRC data analysis and simulation

M.Patsyk, V.Lenivenko, N.Voitishin, V.Palchik, M.Rumiantsev, Yu.Petukhov + MIT,CEA,Tel Aviv

ZDC: centrality / reaction plane data analysis and simulation

F.Guber + INR RAS team, O.Gavrischuk, E.Litvinenko +

Beam parameters and setup at different stages of BM@N experiment

BM@N

Nuclotron - BM@N beam line

Nuclotron beams for BM@N experiment: kin. energy of 1 - 4.5 AGeV, intensity few 10⁶ per spill for Z/A~0.4, beams from proton to Au

Need upgrade of Nuclotron - BM@N beam transport channel :

 \rightarrow replace air intervals / foils with vacuum beam pipe along 160 m of BM@N transport line to get minimum dead material

- \rightarrow implement non-destructive beam position monitoring on movable vacuum inserts
- \rightarrow implement instruments to limit beam size and spread at BM@N target
- \rightarrow implement vacuum or helium beam pipe inside BM@N from target to end

► BM@N can not start stage 1 physics runs until the beam transport channel upgrade is done

- BM@N technical runs performed with deuteron and carbon beams at energies
 T₀ = 3.5 4.6 AGeV and recently with Ar beam of 3.2 AGeV and Kr beam of 2.4 AGeV
- Measurement of Short Range Correlations performed with inverse kinematics: C beam + H₂ target
- Major sub-systems are operational, but are still in limited configurations
- Algorithms for event reconstruction and analysis are being developed, signals of Λ hyperon decays are reconstructed
- Major BM@N plans for Au+Au run in 2020-2021:
- Collaborate with CBM to produce and install large aperture STS silicon detectors in front of GEM setup
- Extend GEM central tracker and CSC outer tracker to full configuration
- Install MPD / CBM type of hadron ZDC calorimeter
- Implement vacuum / helium beam pipe through BM@N setup

Thank you for attention!

M.Kapishin

Backup slides

M.Kapishin

GEM tracker: acceptance / momentum resolution / detection efficiency

Momentum resolution / detection efficiency

To improve vertex and momentum resolution and reduce background under Λ :

- Need few planes of forward Silicon detectors \rightarrow 3 planes used in last run
- Need more GEM planes to improve track momentum reconstruction
 Methodical Paper published in PEPAN Letters, v.15, p.136, 2018(2): First results from BM@N technical run with deuteron beam 30

A proposal for BM@N experiment

to study SRC with hard inverse kinematic reactions

JINR (Dubna): BM@N **Israel:** Tel Aviv University Germany: TUD and GSI MIT FRANCE: CEA

- identify 2N-SRC events with inverse
- study isospin decomposition of 2N-SRC
- study A-2 spectator nuclear system