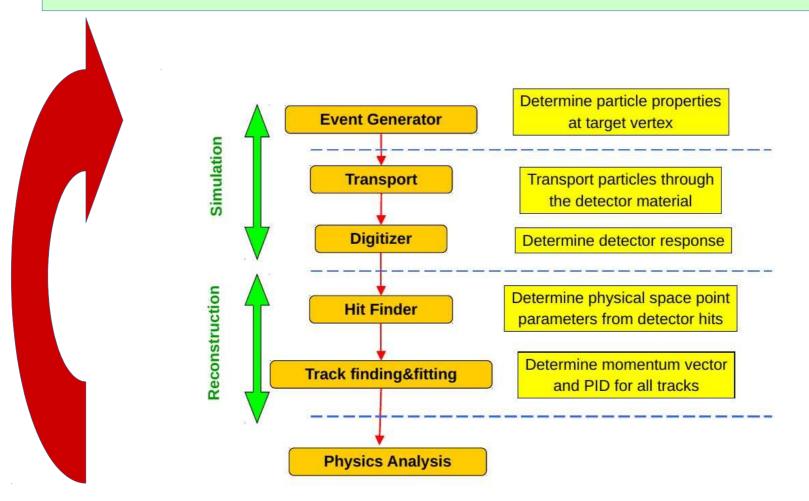
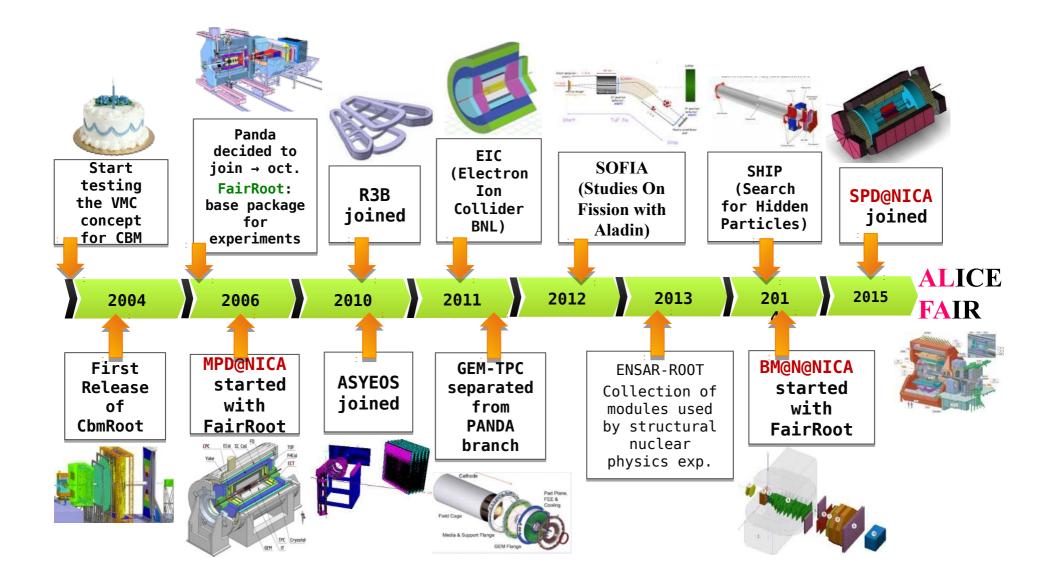
Offline software development for the NICA experiments: MpdRoot and others



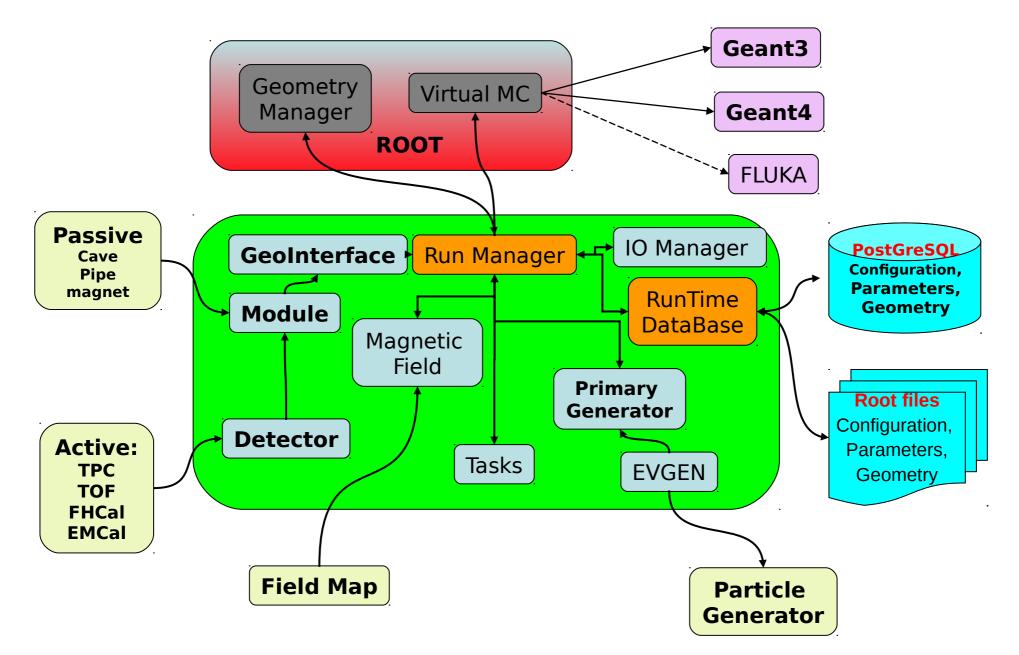

2-nd CM of the NICA collaboration

HEP experiments data flow

Experiment software development is a key task for the whole experiment life.

FairRoot family

FairRoot

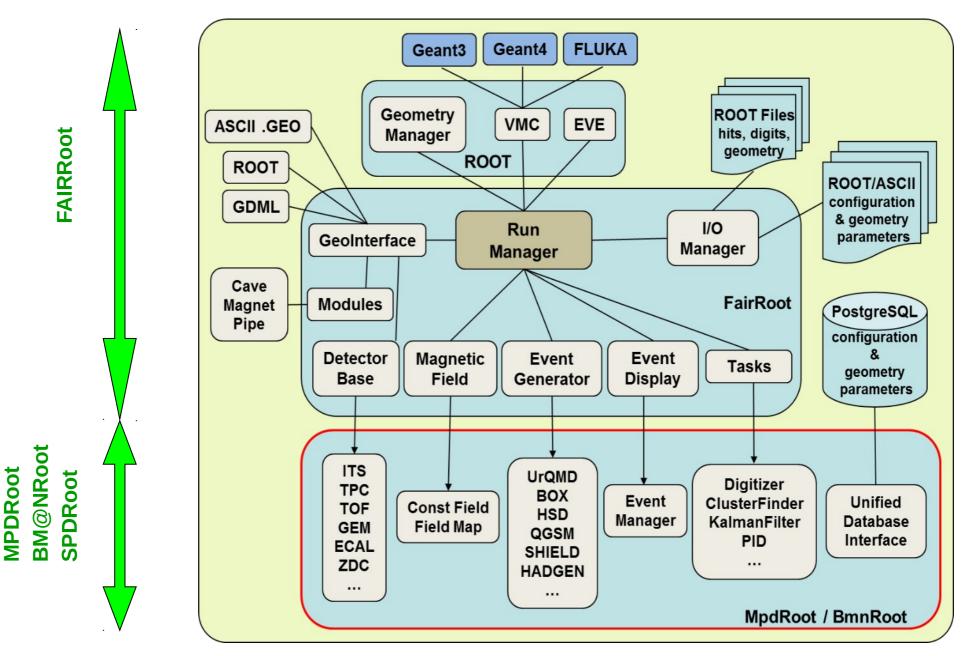

The FairRoot framework is an object oriented simulation, reconstruction and data analysis framework based on ROOT. It includes core services for detector simulation and offline analysis. The framework delivers base classes which enable the users to easily construct their experimental setup in a fast and convenient way. By using the Virtual Monte Carlo concept it is possible to perform the simulations using either Geant3 or Geant4 without changing the user code or the geometry description.

The basic idea of FairRoot is to provide a unified package with generic mechanisms to deal with most commonly used tasks in HEP. FairRoot allow the physicist to:

- Focus on physics deliverables while reusing pre-tested software components.
- > Do not submerge into low-level details, use pre-built and well-tested code for common tasks.
- X Allows physicists to concentrate on detector performance details, avoiding purely software
- × engineering issues like storage, retrieval, code organization etc.

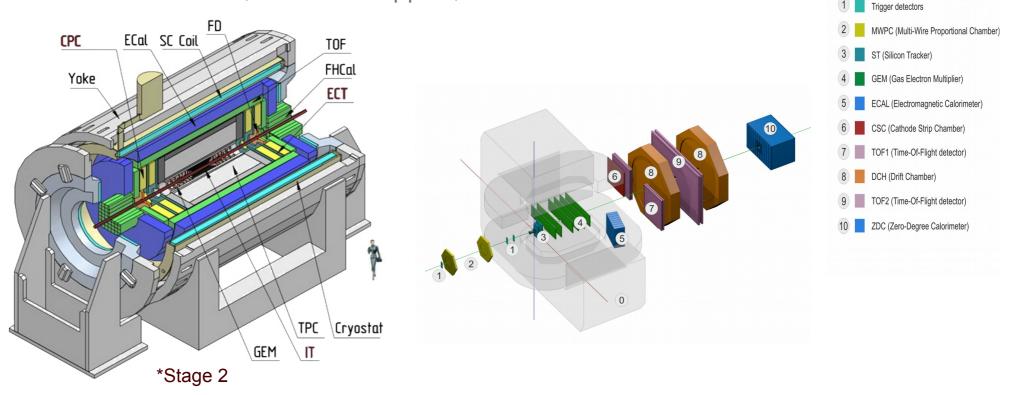
FairRoot

External packages


Releases update every half a year

cmake	3.11.1
gtest	1.7.0
gsl	1.16
icu4c	53.1
boost	1_67_0
Pythia6	416
HepMC	2.06.09
Pythia8	212
Mesa	7.10.3
Geant4	10.04.p01
xrootd	4.8.3
ROOT	6.12.06

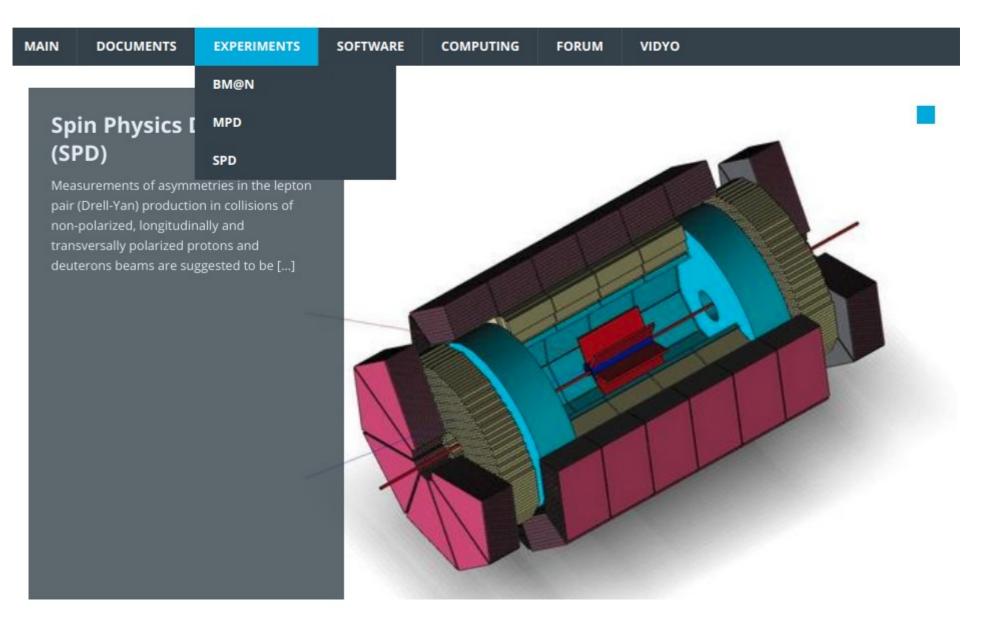
Geant321+_vmc	v2-5
VGM	v4-4
G4VMC	v3-6
MillePede	V04-03-04
ZeroMQ	4.2.5
Protocoll Buffers	3.4.0
nanomsg	1.0.0
FlatBuffers	1.9.0
MessagePack	2.1.5
DDS	2.0
FairMQ	1.2.3
FairLogger	1.2.0


+ Python support

MPD/BM@N/SPDRoot design

NICA HIC experiments frameworks

The frameworks MpdRoot and BmnRoot are developed for the MPD and BM@N event simulation, reconstruction of experimental or simulated data and following physical analysis of heavy ion collisions registered by the detectors. C++ classes, Linux OS support, based on ROOT and FairRoot

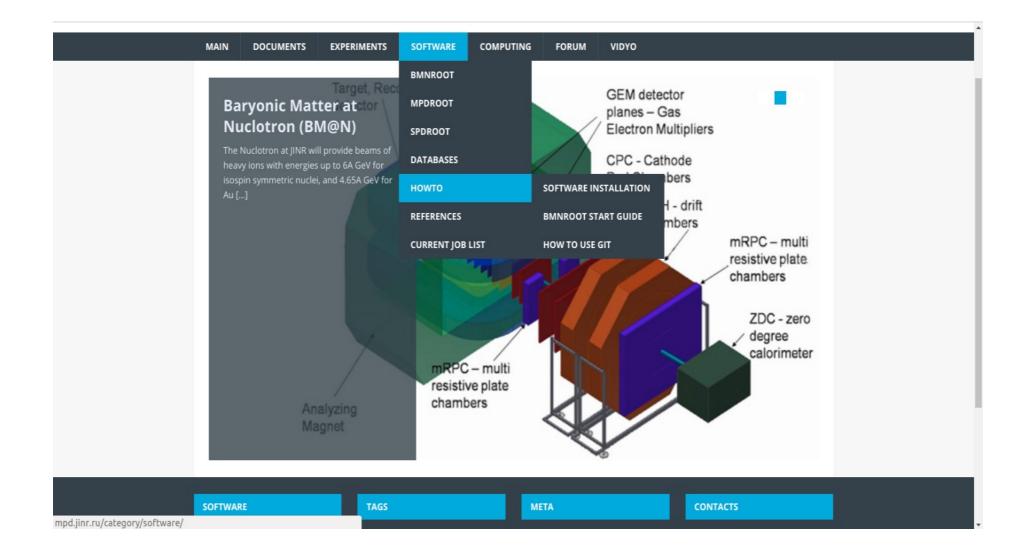

The MpdRoot and BmnRoot software are available in the GitLab https://git.jinr.ru/nica

Analyzing magnet

Experiments info

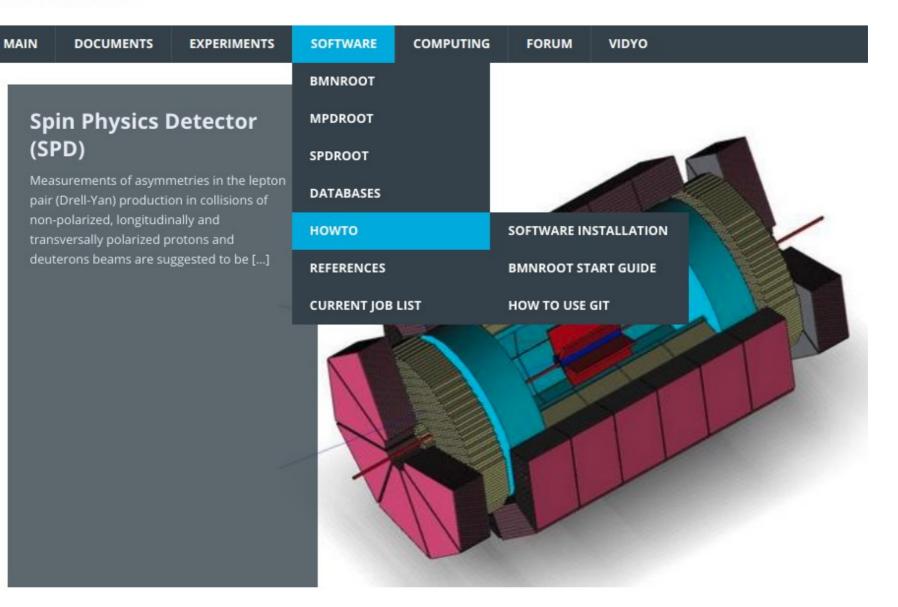
http://mpd.jinr.ru/

TECHNICAL WEBSITE


Experiments frameworks

http://mpd.jinr.ru/

TECHNICAL WEBSITE


How to use

Software installation

NICA EXPERIMENTS

TECHNICAL WEBSITE

Computing resources

http://mpd.jinr.ru/

TECHNICAL WEBSITE

MpdRoot & BmnRoot distributed computing

LHEP NICA Cluster

460 log. cores 180 TB distributed file system (*replicated*): GlusterFS batch system: Sun Grid Engine

LIT Tier1 (lxmpd-ui)

200 log. cores distributed file system: dCache batch system: Torque

All external packages for MpdRoot & BmnRoot are installed & configured. MpdRoot & BmnRoot is taken from GIT repository. ~ 100 users

Distributed computing

NICA EXPERIMENTS

TECHNICAL WEBSITE

MAIN DOCUMENTS EXPERIMENTS SOFTWARE COMPUTING FORUM VIDYO

Batch Processing

If you have time-consuming tasks, many simple tasks or a lot of files to process, you can use *batch* system on distributed clusters, such as **HybriLIT** with SLURM, **NICA prototype cluster** with SGE or **MPD-Tier1** with Torque – to essentially accelerate your work.

If you know how to work with SLURM (SLURM on HybriLIT), Sun Grid Engine (user guide) and Torque systems (doc index), you can use *sbatch* or *qsub* command on the clusters to parallel data processing. Simple examples of user jobs for SLURM, SGE and Torque can be found in *'macro/mpd_scheduler/examples/batch'* directory in our software. Otherwise, MPD-Scheduler was developed to simplify running of user tasks in parallel.

MPD-Scheduler is a module of MpdRoot and BmnRoot software. It uses existing batch system (SLURM, SGE and Torque are supported) to distribute user jobs on the cluster and simplifies parallel job executing without knowledge of the batch systems. Jobs for distributed execution are described and passed to MPD-Scheduler as XML file:

\$ mpd-scheduler my_job.xml

Example of MPD-Scheduler job:

<job name="reco job">

<file sim_input="energy=3,gen=urqmd"

output-"-/mpdroot/mparo/mpd/outpatost_\$(souptor)_root"/>

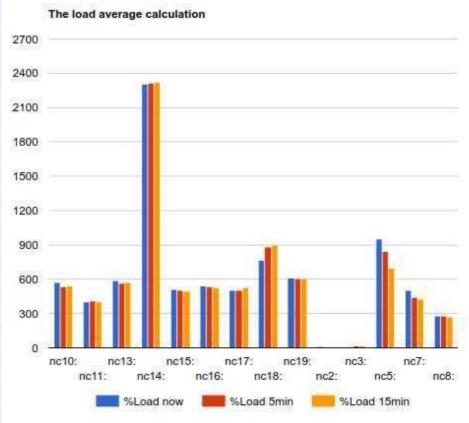
NICA Experiments > All posts > Computing > Batch Processing

SEARCH

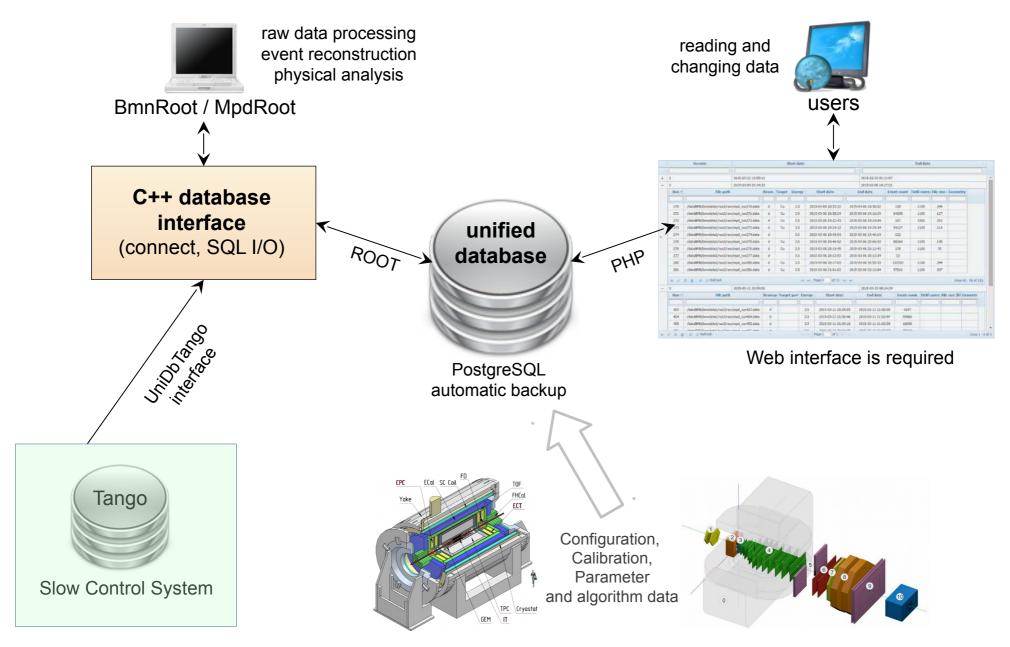
October 2018										
М	Т	W	т	F	S	S				
1	2	3	4	5	6	7				
8	9	10	11	12	13	14				
15	16	17	18	19	20	21				
22	23	24	25	26	27	28				
29	30	31								
« Apr										

Multifunctional Information and Computing Complex

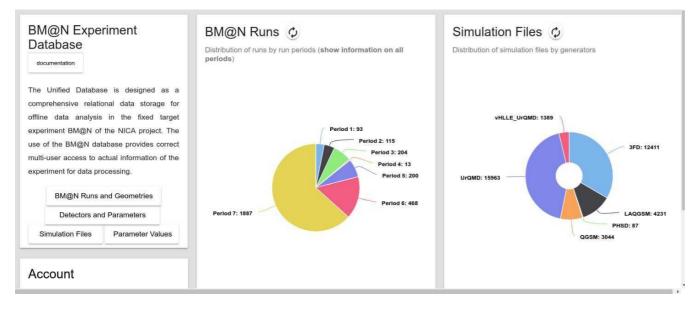
Engineering infrastructure


LIT IT-infrastructure is the one of JINR basic facilities

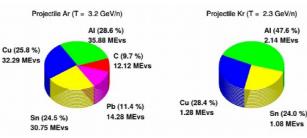
Computing resources: LHEP

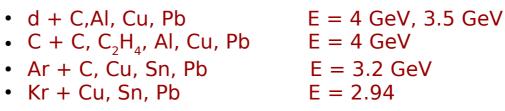

Protected: Cluster monitoring

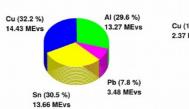
ONLINE cluster nodes


Node	%Load now	%Load 5min	%Load 15min	Users	Uptime(days)	Time	
nc10:	<mark>5</mark> 85	535	540	7	9	14:30:51	
nc11:	<mark>4</mark> 07	407	405	0	44	14:30:45	
nc13:	600	570	572	0	34	14:33:02	
nc14:	2302	2312	2321	0	44	14:30:45	
nc15:	500	500	495	0	15	14:29:45	
nc16:	552	531	525	1	15	14:30:04	
nc17:	506	502	523	0	41	14:30:45	
nc18:	774	891	901	1	27	14:30:03	
nc19:	607	606	600	1	42	14:30:45	
nc2:	1	2	5	4	9	14:29:53	
nc3:	5	19	17	9	27	14:28:23	
nc5:	956	838	696	2	35	14:26:38	
nc7:	424	422	417	1	51	14:25:54	
nc8:	285	277	271	11	15	14:30:19	

The Unified Database for offline data processing

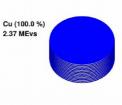

Database for events from MC generators & experiments




Exp. Data

- Uromd
- ✓ OGSM
- pHSD ~
- _____ ✓ Hybrid UrQMD
- ✓ vHLLE UrQMD
- ✓ 3FD(Theseus)

- C + C, C_2H_4 , Al, Cu, Pb E = 4 GeV
- Ar + C, Cu, Sn, Pb
- Kr + Cu. Sn. Pb



Projectile Kr (T = 2.6 GeV/n)

Projectile Kr (T = 2.94 GeV/n)

Runs configuration databases

	Run No	Period No	Start run date	End run date	File path (NICA cluster)	Beam	Target.	Energy, Gev	Events	Field	File size, Mb	Geometry Id
		AI										
	12	3	2015-02-22 15:55:12	2015-02-22 15:55:13	/dataBMN/brindata1/run1/raw/mpd_tun012.data	đ		3.50	100	null	nul	17
•	13	4	2015-02-22 16:01:04	2015-02-22 16:02:56	/dataBMN/bmndala1/run1/raw/mpd_runD13.data	(d)		3.50	5,720	lun I	nut	5t:
ŧ	14	ंत	2015-02-22 16:06:33	2015-02-22 16:06:45	/dataBMN/bmndata1/run1/raw/mpd_run014.data	a d		3.50	214	nuli	nut	17
ŧ	15	1	2015-02-22 16:10:13	2015-02-22 16:11:13	dataBMN/bmndata1/run1/raw/mpd_run015.data	đ		3.50	41	null	nul	17
ŧ3	16	1	2015-02-22 16:12:14	2015-02-22 16:13:03	(dataBMN/bmndata1/run1/raw/mpd_run016.data	(b)		3.50	39	Iun	nuli	17
+	17	1	2015-02-22 16:13:09	2015-02-22 16:13:56	/dataBMN/brindata1/run1/raw/mpd_run017.data	đ		3.50	22	null	nut	17
+	15	(1	2015-02-22 15:11:04	2015-02-22 15:15:07	/dataBMN/brindata1/run1/raw/mpd_run016.data	d		3.50	12,694	nuli	null	17
÷	25	a	2015-02-22 19:42:23	2015-02-22 20:01:54	/dataBMN/bmndata1/run1/raw/mpd_run025.data	3 88 3		3,50	24,469	nul	nut	17
+	27	4	2015-02-22 21:24:03	2015-02-22 21 25:00	/dataBMN/bmridata1/run1/raw/mpd_run027.data	d		3.50	165	null	null	17
÷	32	- 51	2015-02-22 21:36:09	2015-02-22 21:36:22	/dataBMN/bmndala1/run1/raw/mpd_run032.data	(d)		3.50	10	lun)	nut	51
Ŧ	33	3	2015-02-22 21:36:31	2015-02-22 21:41:41	/dataBMN/bmndata1/run1/raw/mpd_run033.data	1.42		3.50	115	nul	nut	17
+	34	1	2015-02-22 21:41:50	2015-02-22 21:53:58	/dataBMN/bmndata1/run1/raw/mpd_run034.data	đ		3.50	133	nuil	nul	17
÷	35	1	2015-02-22.02:00:00	2015-02-22 00:00:00	(dataBMN/brindata1/run1/raw/mpd_run035.data	(b)		3.50	3,454	i.Q	5,00	17
+	36	1	2015-02-22 21:55:00	2015-02-22 22:02:36	/dataBMN/brindata1/run1/raw/mpd_run036.data	đ		3.50	ð,724	null	nut	17
+	40	1	2015-02-22 22:03:39	2015-02-22 22:21:29	/dataBMN/bmndata1/run1/raw/mpd_run040.data	đ		3.50	46,932	nuli	null	17
÷	42	8	2015-02-22 22:23:35	2015-02-22 22:27:32	/dataBMN/bmndata1/run1/raw/mpd_run042.data	(BB)		3,50	9,955	nul	nut	17
+	44	ă.	2015-02-22 22:25 56	2015-02-22 22:32:59	/dataBMN/brindata1/run1/raw/mpd_run044.data	đ		3.50	10,675	null	nul	17

EDIT MODE

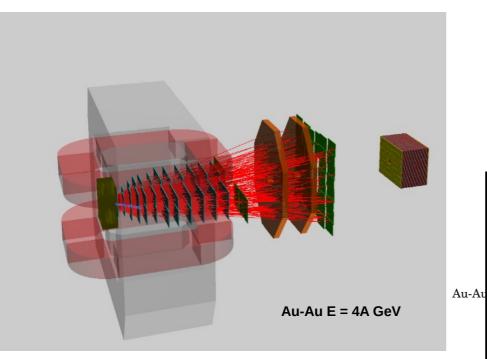
BM@N E-log database

BM@N common e-log, Page 1 of 106

-lome Find Last day

<u>1</u> 2 3 4 5 6 7 8 9 10 11 ... 106 > >>

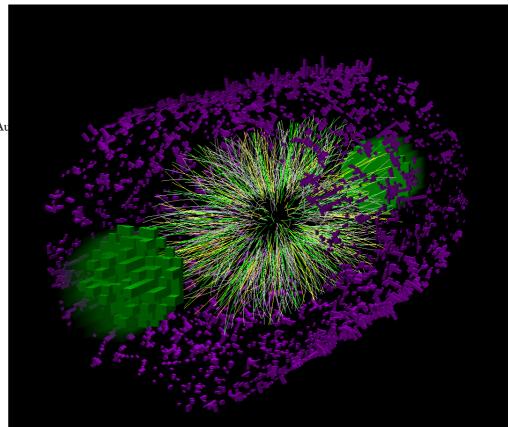
Date	Shift Leader	Туре	N: Run	Trigger	DAQ Status	SP-41, A	SP-57, A	VKM2, A	Beam	Energy, GeV	Target	Comment
2018-03-07 08;14:09	Dryablov	New Run	2487 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	0	C	3,17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10 ⁴ 5 beam distation 2-3 sec, Live time:~100%, #N:50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 07:49:29	Dryablov	New Run	2485 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	Ø	с	3.17	H2 (300 mm)	IT-BC1&BC2&VC&SRC(AND); beam 2x10*5 beam duration 2-3 sec, Live time ~100%, #N:50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 07:31-40	Dryablov	New Run	2484 per 7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	O	c	3,17	H2 (300 mm)	IT-BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 2-3 sec, Live time ~100%, #N:50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 07:05:41	Dryablov	New Run	2483.per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	D	с	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 3x10*5 beam duration 3-4 sec, Live time:~100%, #N:50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 04:46:18	Dryablov	New Run	2481 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	0	с	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 3-4 sec, Live time:~100%, #N:50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 04:20:02	Dryablov	New Run	2480 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	0	c	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10/5 beam duration 3-4 sec, Live time:~100%, #N:50kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 03:52 47	Dryablov	New Run	2479 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	ō	c	3,17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 3-4 sec, Live time ~100%, #N.50KEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 03:23:23	Dryablov	New Run	2478 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	0	c	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 2x10*5 beam duration 3 sec, Live time:~100%, #N:S0&Events, decrease the TQDC threshold for new BC4 to 10. Rat of BC2/BC1~0.4 & VC/BC1~0.44, no contact with Rukoyatkin Pavel started at run #2474
2018-03-07 02:56:01	Dryablov	New Run	2477 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	0	с	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 1.5x10^5 bear duration 3 sec, Live time:~100%, #N:51kEvents, decrease the TQDC threshold for new BC4 to 10.
2018-03-07 02:24:48	Dryablov	New Bun	2475 per.7	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	All in except ECal and CSC	1800	0	o	с	3.17	H2 (300 mm)	IT=BC1&BC2&VC&SRC(AND), beam 1x10*5 beam duration 3 sec. Live time:-100%, #N:18kEvents, decrease the TQDC threshold for new BC4 to 10.


$\underline{1}$ 2 3 4 5 6 7 8 9 10 11 ... 106 > >>

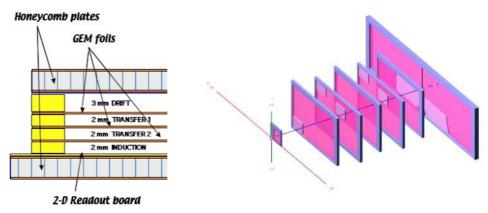
2018 - software team (contact e-mail: gertsen@jinr.ru)

Logged in as shift

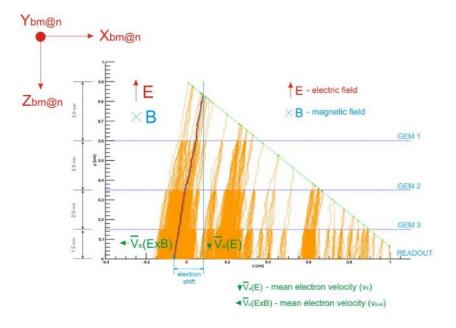
Number of items per page: 10 T Logo


Event Display for the NICA experiments

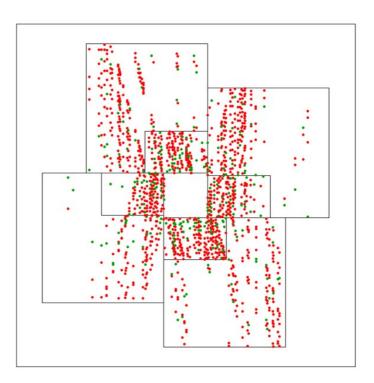
BM@N event : Reco tracks

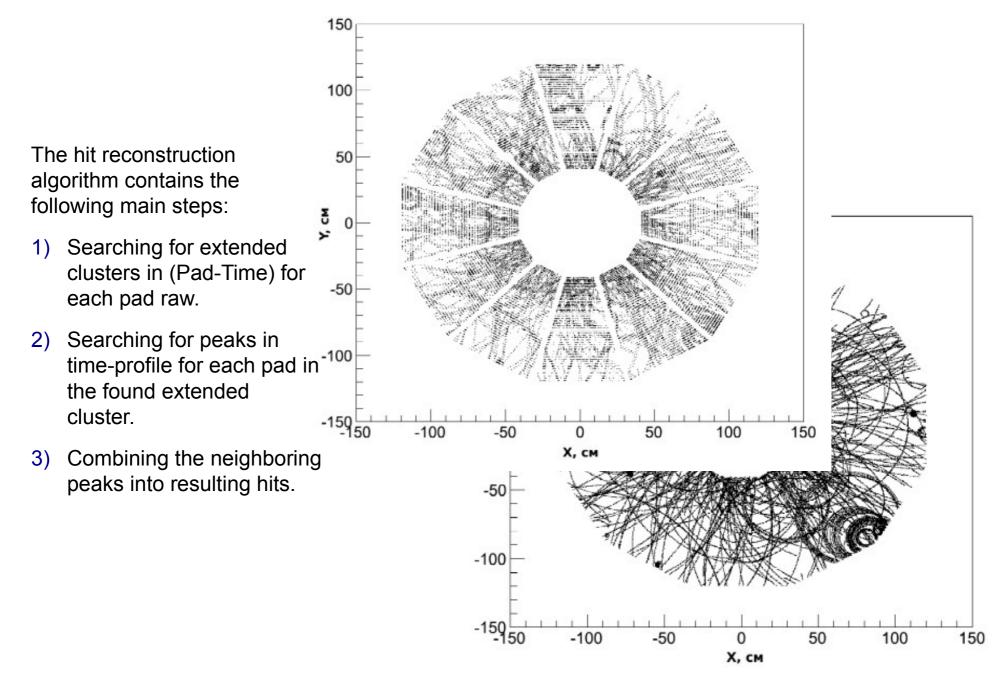

based on EVE package

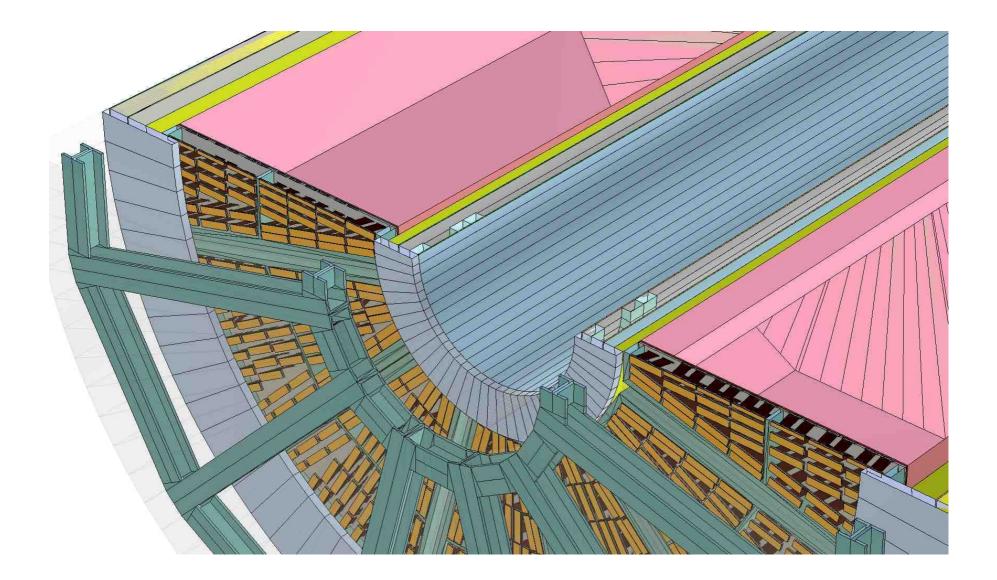
MPD event: TPC reco tracks, FHCal and EMC towers AuAu 11 GeV



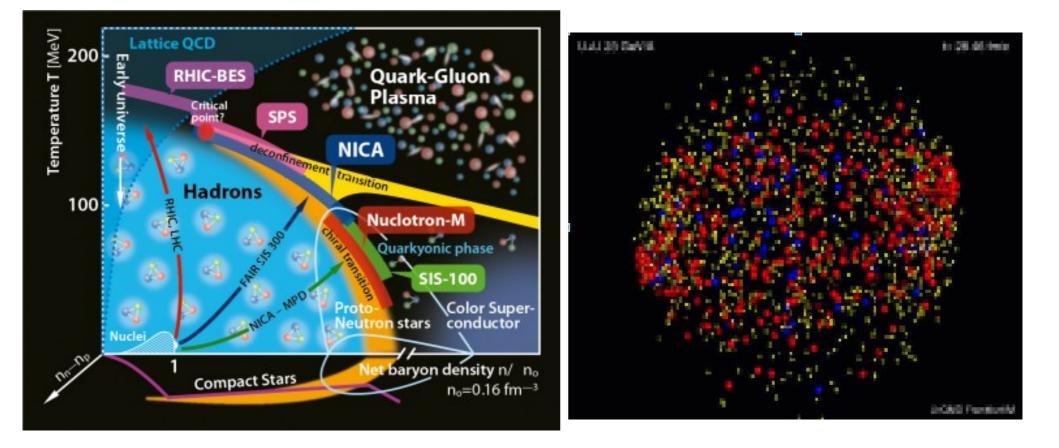
Clustering in GEM


- There are realistic hit finder in GEMs (Garfield)
- For the GEM stations procedure of the fake hits production is implemented


Station 0 (what is it)


electron avalanches in the BM@N GEM chamber

Realistic clustering in MPD TPC

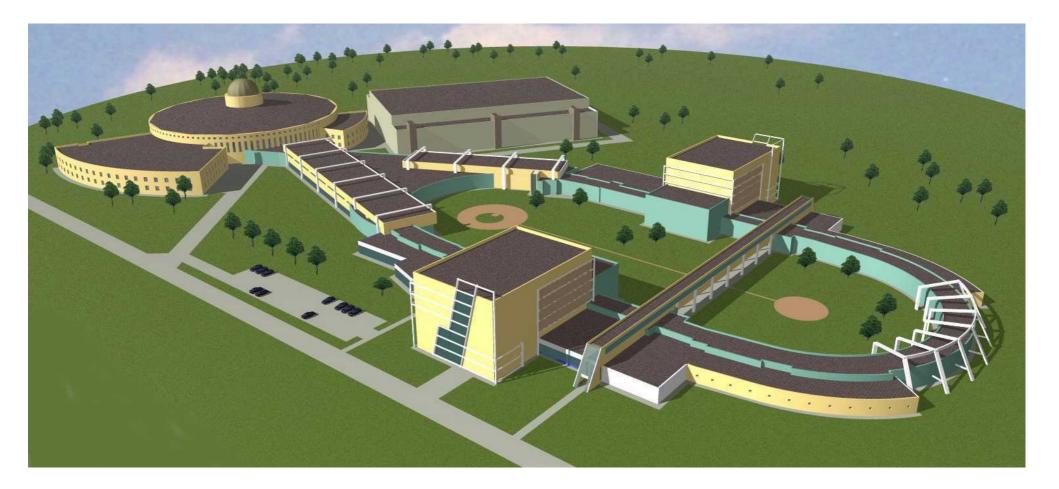


Towards realistic TPC geometry

Physics analyses

Simulations

Hot NICA topics for HPC


 Physical generators Monte-Carlo simulations with different physics input
Detectors simulation detailed detector description with realistic detector response
Tracks reconstruction high efficiency for finding tracks with different methods (deep learning & etc.) ~ 1000 tracks in event
BigData analysis

> 10¹⁰ events, 1min/ev, ~2 years on our today resources
Multicore & multithreads computing
BigPanDA & GRID
Clouds and cloud services

NICA center

Thank for your attention

