

Current status of the TPC simulation and reconstruction

A.Zinchenko

for the MPD collaboration VBLHEP, JINR, Dubna, Russia

MPD collaboration meeting, 29-30 October 2018

- 1. The "realistic" TPC simulation ("microsimulation") procedure
- 2. Cluster / hit reconstruction method and results
- 3. Track reconstruction method and results
- 4. Secondary vertex reconstruction method
- 5. Results: hyperon reconstruction

- 1. Primary ionization (ionization clusters)
- 2. Drift and diffusion of ionization electrons
- 3. Gas gain fluctuations (Polya distribution)
- 4. Pad response (charge distribution on pad plane)
- 5. Electronics shaping
- 6. Signal digitization (ADC overflow)

Parameter	Value
Magnetic field	0.5 T
Drift gas	P10 (90% Ar + 10% CH ₄)
Drift velocity	5.45 cm/µs
Transverse diffusion at 0.5 T	185 μm/√cm
Longitudinal diffusion	320 μm/√cm
Pad size	$5x12 \text{ mm}^2 (27 \text{ rows}) + 5x18 \text{ mm}^2 (26 \text{ rows})$
Charge spread σ	0.196 mm
Electronics shaping time	180 ns (FWHM)
ADC dynamic range	12 bits
ADC sampling frequency	10 MHz

- Precluster finder (group of adjacent pixels in time bin pad space)
- Hit finder ("peak-and-valley" algorithm either in time bin – pad space (for simple topologies) or in time-transverse coordinate pixel space after Bayesian unfolding (for more complicated topologies)) → COG around local maxima

Cluster topologies

MLEM procedure (Bayesian unfolding)

MLEM procedure - information recovery

1. UrQMD, central (0-3 fm), Au+Au at 9 GeV

Double-hit resolution

Two-pass Kalman filter with track seeding using outer hits (1st pass) or leftover inner hits (2nd pass)

Track reconstruction

Track reconstruction efficiency

Primary Primaries: $N_{hits} > 14$, $|\eta| < 1.3$ Efficiency, % 100 80 Efficiency Clones 60 Hell Ghosts 40 20 0₀ 1.2 1.4 p_{_}, GeV/c 0.2 0.4 0.6 0.8 1 N_{hits} > 14, |η| < 1.3 2 Contamination, % 1.8 1.6 Primary clones |.4∄ Ghosts .2 0.8 0.6 0.4 0.2 ზ 1.2 1.4 p_T, GeV/c 0.2 0.8 0.4 0.6 1

Track reconstruction efficiency

Primary

Momentum resolution

Track pointing accuracy

Track length resolution

- MpdParticle (inspired by CbmKFParticle approach (which was inspired by BaBar software))
- Main idea: decouple secondary vertex reconstruction / decay product fitting from the tracking task – work with particle parameters – the approach makes it possible to treat charged and neutral objects on the same footing.
- Method implementation is based on the Kalman filter formalism described in R.Luchsinger, Ch.Grab "Vertex reconstruction by means of the method of Kalman filter", Comp. Phys. Comm., 76 (1993) 263.

Analysis Method: Secondary Vertex Finding Technique

 $\Omega^{-} \rightarrow \Lambda + K^{-} \rightarrow p + \pi^{-} + K^{-}$

Event topology:

- ➢ PV − primary vertex
- \succ V₀ vertex of hyperon decay
- dca distance of the closest approach
- ➢ path − decay length

- ➢ Generator: PHSD, Au+Au @ 11 GeV, minbias, 2M events
 → 4M
- > **Detectors:** start version of MPD with up-to-date TPC & TOF
- **Track acceptance criterion:** $|\eta| < 1.3$, $N_{hits} \ge 10$
- Realistic track reconstruction
- ➢ Realistic PID in TPC & TOF

Hyperon reconstruction

Phase space for reconstructed and selected true hyperons

A. Zinchenko

23

Λ reconstruction: p_T dependence

A. Zinchenko

30.10.2018

Hyperons @ different b

Efficiency of true Λ in p_T &b bins for |y| < 0.5: (reco & select Λ) / (all gen Λ)

p_T spectrum of Λ

Reconstructed spectrum: fit of selected Λ in each bin (Gauss $\pm 3\sigma$) / Eff.

- > The MPD TPC "realistic" simulation is in operation
- Reconstruction results look reasonable
- Simulation / reconstruction chain can be used for physics analyses