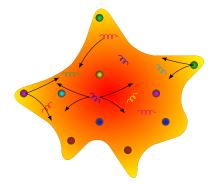
Formation of a Quark-Gluon-Plasma : understanding the energy and system size dependence

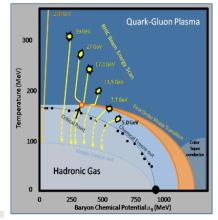
Sophys Gabriel

Supervisor : Klaus Werner at Subatech


Seminar Plenary at JINR - Dubna - 03 September

Ph.D in Theory Group at Subatech sophys@subatech.in2p3.fr

Sophys Gabriel


Context : QGP

- Quark-Gluon Plasma (QGP)
- Partons are deconfined
- QGP life-time : 10^{-21} s, size : 10^{-15} m \Rightarrow cannot study directly the QGP
- QGP formated in Heavy Ion collisions at accelerators
- Can we see an energy or system size dependence to create a QGP?

BES program: Dependence on Energy

STAR collaboration : arXiv:1007.2613

BES program

- At RHIC in Brookhaven National Laboratory
- Gold-Gold Collisions

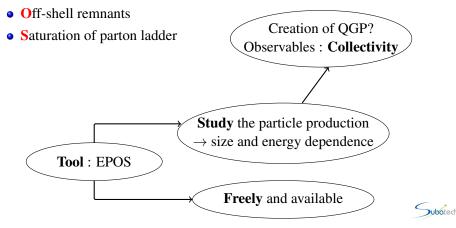
Three Goals

- Find evidence of a phase transition ?
- Find critical point ?
- Evolution with $\sqrt{s_{NN}}$ of the medium ?

Small system: Dependence on system size

A new problematic of small system? A recent aspect of heavy ion physics

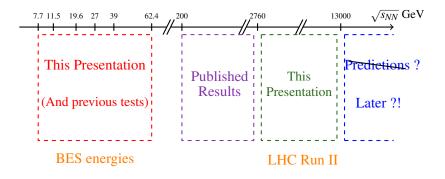
- The name "small systems" appeared at LHC Run I, it is now a session at Quark Matter
- A nonofficial translation could be "system a priori too small to show characteristics of heavy ion physics and however in which we observe them, at least some". Caveats "a priori too small" is not defined ...
- "A priori small" refers to system size: protons in initial stage with sometimes a **final state looking like a large system**, at least for charged particle multiplicity


pp/pA/AA at the same multiplicity have same behavior, role of geometry? How is done the transition from small to large?

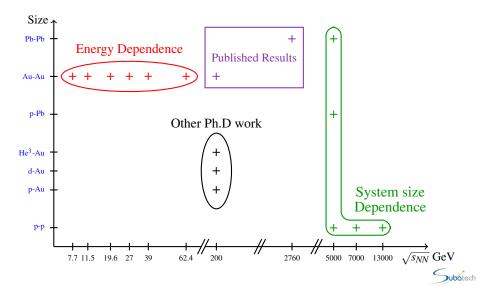
Jubated

Introduction

Event generator : EPOS


- Energy conserving quantum mechanical multiple scattering approach
- based on Partons, partons ladders, strings

Introduction


When do we use EPOS ?

Model for very high energy.

Do we really have a "collectively expanding plasma" in all systems, big (PbPb) and small (pp), at high energies and low energies?

Introduction

Contents

1 Introduction

2 The event generator

EPOS, one event EPOS : Parton Based Gribov Regge Theory Core-Corona Separation

3 Energy Dependence

4 System Size Dependence

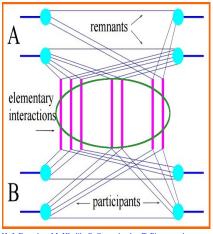
5 Conclusion

Event generator : EPOS

How do we construct one event ?

Universal Model for all collisions

Same procedure applies, based on several stages :

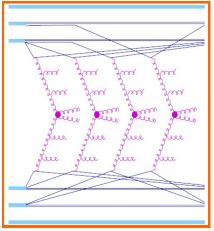

- Initial Conditions
- 2 Core-Corona Approach
- **3** Viscous hydrodynamic expansion
- 4 Statistical hadronization
- **5** Final state hadronic cascade

Event Generator : EPOS

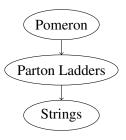
Parton-Based-Gribov-Regge-Theory (PBGRT)

H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog and K. Werner, Phys. Rept. **350**, 93 (2001)

- Interaction between partons is : **Pomeron** : treated by Quantum Field Theory
- Energy conserved by partonic participants and remnants



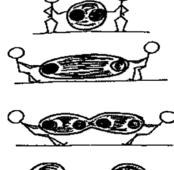
Event Generator : EPOS


Parton-Based-Gribov-Regge-Theory (PBGRT)

Initial Conditions
 Core-Corona Approach

H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog and K. Werner, Phys. Rept. **350**, 93 (2001)

- Interaction between partons is : **Pomeron** : treated by Quantum Field Theory
- Energy conserved by partonic participants and remnants

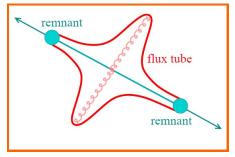

Strings ?

The event generator

Energy Dependence

String Model : A phenomenological model of hadronization

- String without mass and without color between two partons
- Potential proportional to length
- When the potential is sufficient
 → one pair of quark-antiquark
 is created : Schwinger
 Mechanism

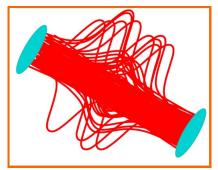


One Lund string for one scattering

Few scatterings \rightarrow we *can* treat **independently** each string

GDRE2012, Nantes, Jul 2012, Klaus WERNER, Subatech, Nantes

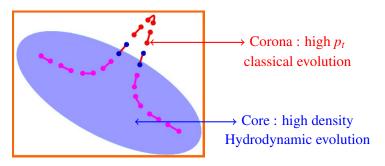
More scatterings \Rightarrow



One Lund string for one scattering

A lot of scatterings \rightarrow we **cannot** treat *independently* each string

We can observe a different string densities


B. Guiot and K. Werner, J. Phys. Conf. Ser. 589 (2015) no.1

Core-Corona Evolution

High density : we use hydrodynamics \rightarrow the Core is treated as fluid. Low density : we do nothing \rightarrow Corona becomes hadrons !

B. Guiot and K. Werner, J. Phys. Conf. Ser. 589 (2015) no.1

Unified Approach

- Initial Conditions
- 2 Core-Corona Approach
- 3 Hydrodynamical expansion

Core-Corona Approach

Using hydrodynamic \rightarrow the Core is treated as fluid.

Corona becomes Jet \Rightarrow Later Hadrons !

Hydrodynamical expansion

Core evolves with respect to the equation of relativistic viscous hydrodynamics

Local energy momentum : $\partial_{\mu}T^{\mu\nu} = 0$ $\nu = 0, \cdots, 3$

and the conservation of net charges,

 $\partial N_k^{\mu} = 0, \qquad k = B, S, Q$

with B, S and Q reffering to baryon number, strangeness and electric charge

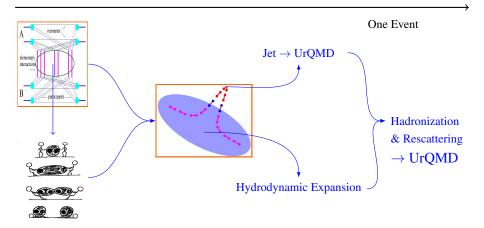
Unified Approach

- Initial Conditions
- 2 Core-Corona Approach
- 3 Hydrodynamical expansion
- Statistical Hadronization

Statistical Hadronization

6 Hadronic cascade

Core-Matter makes hadronization Defined by a constant temperature T_H Procedure of Cooper-Frye


K. Werner, Iu. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, arXiv:1010.0400, Phys. Rev. C 83, 044915 (2011)

$\begin{array}{l} \mbox{Hadronic Cascade} \\ \mbox{Hadron density still big} \rightarrow \mbox{hadron-hadron rescatterings} \\ \mbox{Use UrQMD Model} \end{array}$

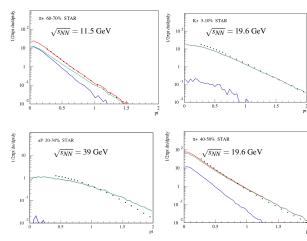
M. Bleicher et al., J. Phys. G25 (1999) 1859

H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev. C78 (2008) 044901

Unified Approach

Contents

1 Introduction


- 2 The event generator
- Energy Dependence Spectra Anisotropic flow
- **4** System Size Dependence

5 Conclusion

pt Spectra Au-Au collisions

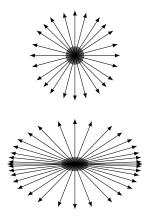
- The slope is slightly different
- Big part of core (fluid) even at low energies!
- Not enough core at low *p*_T, and too much core at high *p*_T

pt

Description of used observable Anisotropic flow

A way of characterizing the various patterns of anisotropic flow is to use a Fourier expansion of the particle distribution function:

$$E\frac{d^3N}{d^3\mathbf{p}} = \frac{1}{2\pi} \frac{d^2}{p_t dp_t dy} \left(1 + 2\sum_{n=1}^{\infty} \mathbf{v}_n \cos\left[n(\phi - \psi_{RP})\right] \right)$$


E: energy of the particle ; p: momentum ; pt: transverse momentum ; ϕ : azimuthal angle ; y: rapidity ; ψ_{RP} : reaction plane angle.

Anisotropic Flow : (n=1: Directed Flow , n=2: Elliptic Flow)

$$v_n(pt,y) = \langle \cos[n(\phi(pt,y) - \psi_{RP})] \rangle$$

Anisotropy \neq Isotropy

- Elementary Collisions: **Isotropy** of particle production
 - $v_2 = 0$: Elliptic Flow
- A-A Collisions: **Anisotropy** of particles production

 $v_2 > 0$

- Something more than elementary processes
- Complex observable with different methods to calculate it

Event plane method

Eta-Sub : Event Plane Method

Event Flow vector (projection of azimuthal angle):

$$Q_{n,x} = \sum_{i} w_i \cos(n\phi_i) = Q_n \cos(n\Psi_n)$$
$$Q_{n,y} = \sum_{i} w_i \sin(n\phi_i) = Q_n \sin(n\Psi_n)$$

The sum goes over all particles *i* used in *the event plane calculation*. ϕ_i and w_i are the lab azimuthal angle and weight for particle *i*

Where Ψ_n is **the event plane angle**:

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right)$$

Eta-Sub : Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

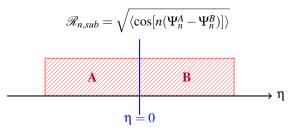
Average over all particles in all events with their azimuthal angles ϕ_i in a given rapidity and p_T momentum space.

Eta-Sub : Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

Average over all particles in all events with their azimuthal angles ϕ_i in a given rapidity and p_T momentum space.

The final flow coefficients are :
$$v_n = \frac{v_n^{\text{obs}}}{\Re_n}$$

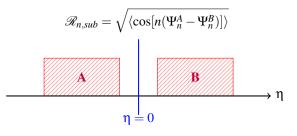


Eta-Sub : Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

The final flow coefficients are :
$$v_n = \frac{v_n^{\text{obs}}}{\mathscr{R}_n}$$

 $\begin{array}{l} \mbox{Eta-sub method}: \mbox{two planes defined by negative (A) and positive (B) pseudorapidity } \\ \mbox{with} \approx \mbox{equal multiplicity used to reduce nonflow effects:} \end{array}$



Eta-Sub : Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

The final flow coefficients are :
$$v_n = \frac{v_n^{\text{obs}}}{\mathscr{R}_n}$$

 $\begin{array}{l} \mbox{Eta-sub method}: \mbox{two planes defined by negative (A) and positive (B) pseudorapidity } \\ \mbox{with} \approx \mbox{equal multiplicity used to reduce nonflow effects:} \end{array}$

Eta-Sub : Event Plane Method

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

The final flow coefficients are :

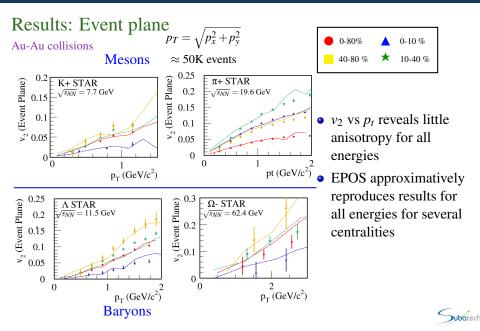
$$v_n = \frac{v_n^{\text{obs}}}{\mathscr{R}_n}$$

Three planes :

$$\mathscr{R}_{n} = \sqrt{\frac{\langle \cos[n(\Psi_{n}^{A} - \Psi_{n}^{B}) \rangle \times \langle \cos[n(\Psi_{n}^{A} - \Psi_{n}^{C}) \rangle}{\langle \cos[n(\Psi_{n}^{B} - \Psi_{n}^{C}) \rangle]}}$$

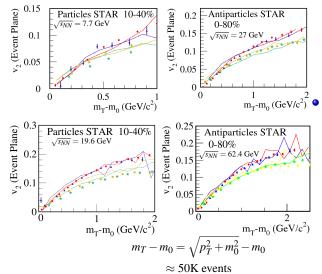
Eta-Sub : Event Plane Method

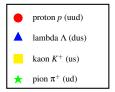
$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$


The final flow coefficients are :

$$v_n = \frac{v_n^{\text{obs}}}{\mathscr{R}_n}$$

Three planes :

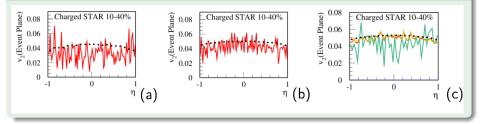

$$\mathscr{R}_n = \sqrt{rac{\langle \cos[n(\Psi_n^A - \Psi_n^B) \rangle \times \langle \cos[n(\Psi_n^A - \Psi_n^C) \rangle}{\langle \cos[n(\Psi_n^B - \Psi_n^C) \rangle]}}$$



Separation Baryons - Mesons

Au-Au collisions

Contributions [to *v*₂] from particles and antiparticles reproduced for different centrality regions



Results:Event Plane Method

Au-Au collisions

$$\eta = \frac{1}{2} \ln \left(\frac{p + p_z}{p - p_z} \right)$$
Full
Core
Corona

v₂ vs Pseudorapidity at EPOS 3.210

At energy collisions : $\sqrt{s_{NN}} = 7.7, 11, 39$ GeV with ≈ 30 K events Seems easier to reproduce experimental data when energy increases

STAR Collaboration (Adamczyck, L. et al.) Phys. Rev. C 86, 054908 (2012)

Cumulants Method

A. Bilandzic, R. Snellings, and S. Voloshin Phys. Rev. C 83, 044913 - Published 26 April 2011

Q-Cumulant \rightarrow Recent Method to calculate cumulants \rightarrow one loop over data Faster and unbiased contrary to the previous cumulants method

Flow vector :
$$Q_n = \sum_{i=1}^M e^{in\phi_i} \qquad \langle 2 \rangle \equiv \langle e^{in(\phi_1 - \phi_2)} \rangle \qquad \langle 4 \rangle \equiv \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle$$

Q-Cumulant \rightarrow Recent Method to calculate cumulants \rightarrow **one loop over data** Faster and unbiased contrary to the previous cumulants method

Flow vector:
$$Q_n = \sum_{i=1}^{M} e^{in\phi_i} \qquad \langle 2 \rangle \equiv \langle e^{in(\phi_1 - \phi_2)} \rangle \qquad \langle 4 \rangle \equiv \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle$$

Procedure to create cumulants by direct calculations :

- Decompose azimuthal correlations into expressions like |Q_n|², |Q_n|⁴ ... in terms of (2), (4) ...
- Solve system of coupled equations for multi-particle scattering in same harmonic (2), (4) ...
- 6 Create $\langle \langle 2 \rangle \rangle, \langle \langle 4 \rangle \rangle$, average on all events, taking in account weights of event
- 4 Create Cumulants with terms of $\langle \langle 2 \rangle \rangle, \langle \langle 4 \rangle \rangle$ etc ...

Reduce the contribution of nonflow effects

 $\langle 2 \rangle = \frac{|Q_n|^2 - M}{M(M-1)}$

Cumulants Method

Cumulant coefficients

A. Bilandzic, R. Snellings, and S. Voloshin Phys. Rev. C 83, 044913 - Published 26 April 2011

Cumulants for reference flow :

Reference flow or integrated flow :

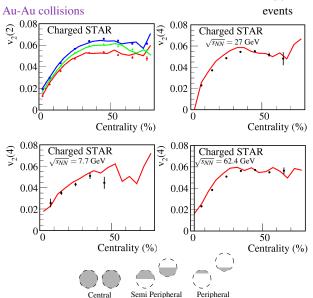
 $c_n\{2\} = \langle \langle 2 \rangle \rangle \qquad \qquad v_n\{2\} = \sqrt{c_n\{2\}}$ $c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \times \langle \langle 2 \rangle \rangle^2 \qquad \qquad v_n\{4\} = \sqrt[4]{-c_n\{4\}}$

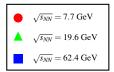
Reference Flow : v_2 vs multiplicity or vs centrality

Cumulants for differential flow :

Differential flow :

 $d_n\{2\} = \langle \langle 2' \rangle \rangle \qquad \qquad \nu'_n\{2\} = d_n \cdot d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \times \langle \langle 2' \rangle \rangle \langle \langle 2 \rangle \rangle \qquad \qquad \nu'_n\{4\} = -d_n\{4\}$


 $v'_n\{2\} = d_n\{2\}/\sqrt{c_n\{2\}}$ $v'_n\{4\} = -d_n\{4\}/(-c_n\{4\})^{3/4}$


Differential Flow : v_2 vs p_t or vs η

Results Cumulants Method

 Good reproduction of results for cumulants methods for v₂{2} and v₂{4} for each energy

Energy Dependence

- Do not reproduce p_t spectra at low energies
- Core contributes stronger than corona at all energies
- Implementation of event plane and cumulant methods in EPOS
- Reproduce integrated and differencial flow for all energies
- No energy dependence see at BES energies
- Same behavior for all energies

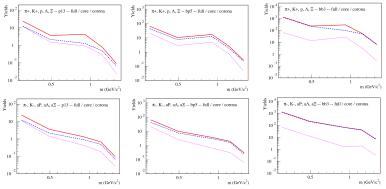
Our scenario of an hydrodynamical expansion, based on initial conditions from our Gribov-Regge approach, is supported

Contents

1 Introduction

- 2 The event generator
- 3 Energy Dependence
- 4 System Size Dependence Yields Spectra Anisotropic Flow

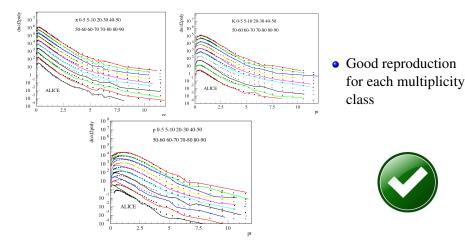
5 Conclusion



Yields

Theoretical test

How the fluid contributes for each type of collisions?

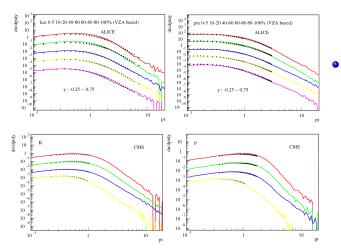

- same trend of full-core-corona contributions
- core part contributes stronger than corona part
- core part stronger for big system sizes

ubotech

pt spectra Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

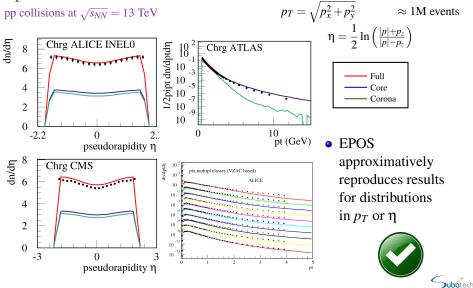
$$p_T = \sqrt{p_x^2 + p_y^2}$$

 $\approx 250 \text{K}$ events

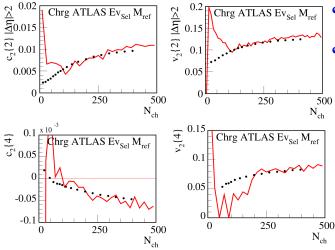


Spectra p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

 ≈ 500 K events



EPOS approximatively reproduces results for distributions in p_T


Spectra

 $\approx 240 \text{K}$ events

Anisotropic flow: cumulant

Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

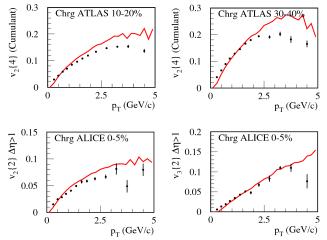
- No reproduction at low multiplicity
- Reproduction at high multiplicity (or central collisions)

 $\approx 240 \text{K}$ events

Anisotropic flow: cumulant

Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

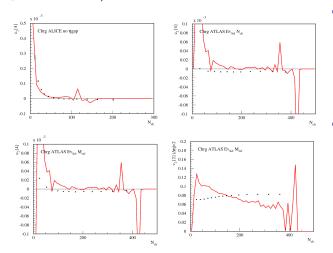
- No reproduction at low multiplicity
- Reproduction at high multiplicity (or central collisions)
- Same conclusion than *v_n* vs multiplicity



 $\approx 240 \text{K}$ events

Anisotropic flow: cumulant

Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$



- Reproduction at high multiplicity (or central collisions)
- Seems difficult to reproduce data at high *p_t*: hydro model
- Same conclusion than v_n vs

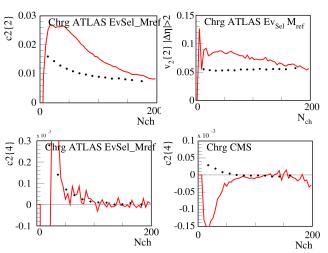
Anisotropic flow: cumulant

p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

 $\approx 500 \text{K}$ events

 almost agreement at high multiplicity but do not reproduce anisotropic observables

• c_2 {4} seems higher than 0, collectivity not related to the fluid?!!?



Anisotropic flow: cumulant

pp collisions at $\sqrt{s_{NN}} = 13$ TeV

 $\approx 1M$ events

- at high multiplicity, EPOS seems more adapted to reproduce data
- But we do not reproduce anisotropic observables

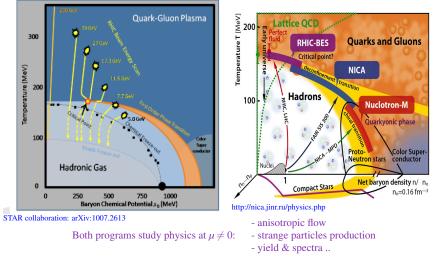
Conclusion

• EPOS part

Use EPOS at different energy ranges to moving forward its release Implementation of **event plane** and the **cumulant** methods with or without pseudorapidity gap.

• Energy dependence

Good data reproduction for anisotropic observables: a collectively expanding plasma seems exist at these energies.


No Good data reproduction for pt spectra, first time that we use EPOS at these energies, *work in progress*.

• System Size dependence

Confirmation of the utilisation of EPOS for high multiplicity **Pb-Pb** collisions. **Good reproduction** of spectra observables for each system size with high core contribution but not for anisotropic observables.

Work on size of initial fluid to solve the problem of anisotropy for pp collisions

BES and NICA program

Try to work on Nica energies?

Study of the energy dependence of particle production

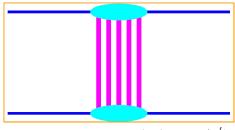
Thank you for your attention !

Sophys Gabriel

Study of the energy dependence of particle production

Dubna 2018 41 / 41

Core Corona separation


The core corona separation start by the identification of string fragments in core or corona depending of critical density ρ_0 . However, some string fragments of bulk matter can escape the plasma depending of their transverse momenta. To know exactly which fragments escape, we compute:

$$p_{new}^t = p_t - f_{Eloss} \int_{\gamma} \rho \, dL \tag{1}$$

where γ is the trajectory of the segment and f_{Eloss} a model parameter using some interpolation. The p_t^{new} can be positive or negative, if the new p_t is positive, the string fragments can escape the bulk matter and can be identify as a corona fragment. In the other case ($p_{new}^t < 0$), the segment cannot escape the plasma, therefore it contributes to the core.

Gribov-Regge Theory and Pomeron

Effective Field Theory Elementary interaction \rightarrow Pomeron exchange Pomeron : Quantum numbers of vacuum Vladimir Gribov in ≈ 1960

Elastic Amplitude : $T(s,t) \approx i s^{\alpha_0 + \alpha' t}$

Collectivity in small system ?

What is collectivity $? \Rightarrow A$ lot of definitions !

My definition : multiple particles are correlated across rapidity or pseudorapidity due to a common origin.

Why do we care? : learn about : medium (transport), initial state (saturation), and microscopic processes (MPI,strings, parton ladders ...)

We want to find collectivity by measure of multiparticles correlations :

$$\underbrace{v_2\{2\}}_{c_2\{2\}>0} \leqslant v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \\ c_2\{2\}>0, c_2\{4\}<0, c_2\{6\}>0, c_2\{8\}<0$$

measure in small system ?

- Learn about the medium (transport)
- Learn about the initial state (saturation)
- Small and dilute system: chance to learn about microscopic processes (MPI, strings, parton ladders ...)

Elliptic Flow Differential Flow

Definitions of vectors p and q:

For particles labeled as POI :

ŀ

122

For particles labeled as **both** POI and REP :

$$p_n\equiv\sum_{i=1}^{m_p}e^{in\psi_i} \qquad \qquad q_n\equiv\sum_{i=1}^{m_q}e^{in\psi_i}$$

Average of two- and four-particles azimuthal correlations :

$$\langle 2' \rangle = \frac{\mathscr{R}[p_n Q_n^*] - m_q}{m_p M - m_q} \qquad \langle 4' \rangle \propto \mathscr{R}[p_n Q_n Q_n^* Q_n^*] + \mathscr{R}[q_n Q_n^*] \dots$$

Subatech

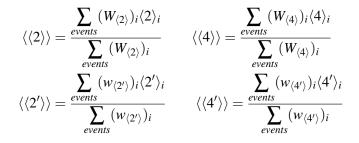
Hydrodynamic equations

Based on the four-momenta of string segments, we compute the energy momentum tensor and the flavor flow vector at some position x (at $\tau = \tau_0$) as :

$$T^{\mu\nu} = \sum_{i} \frac{\delta p_{i}^{\mu} \delta p_{i}^{\nu}}{\delta p_{i}^{0}} g(x - x_{i})$$

$$N_q^{\mu}(x) = \sum_i \frac{\delta p_i^{\mu}}{\delta p_i^0} q_i g(x - x_i)$$

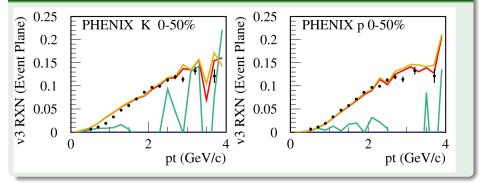
where q = u,d,s


arXiv:1312.1233v1 [nucl-th] 4 Dec 2013

Elliptic Flow

Event Average :

Event Weight



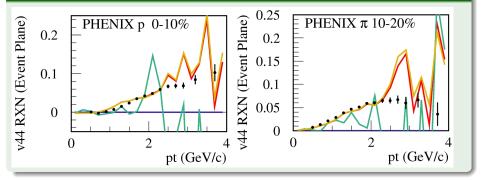
Definition of weights : $W_2 = M(M-1)$ $W_4 = M(M-1)(M-2)(M-3)$ $w_{2'} = m_p M - m_q$ $w_{4'} = (m_p M - 3m_q)(M-1)(M-2)$

Results Event Plane Method

$$p_t = \sqrt{p_x^2 + p_y^2}$$

v_3 vs p_t at EPOS 3.210

At energy collisions : $\sqrt{s_{NN}} = 200 \text{ GeV}$ with 287300 events


PHENIX Collaboration (A. Adare et al.) Phys. Rev. C 93, 051902 - 2016

Subatech

Results Event Plane Method

v_4 vs p_t at EPOS 3.210

At energy collisions $\sqrt{s_{NN}} = 200 \text{ GeV}$ with 287300 events

PHENIX Collaboration (A. Adare et al.) Phys. Rev. C 93, 051902 - 2016

Subatech