

CRyogenic IONizer with 6 T magnetic field (KRION-6T) the prototype of the ion source for NICA/MPD

Heavy Ion Source Group Veksler and Baldin Lab of High Energy Physics Joint Institute for Nuclear Research Dubna, Russia

Alexander Ramsdorf

1. EBIS/ESIS timeline at JINR

1968	IEL1, IEL2	Au ¹⁹⁺	warm	0,4T	16 cm
1971	KRION1	C ⁶⁺ , N ⁶⁺ , O ⁸⁺ , Ne ¹⁰⁺	SC	1,2T	1,2 m
1974	KRION2	Ar ¹⁸⁺ , Kr ³⁶⁺ , Xe ⁵⁴⁺	SC	2,2T	1,2 m
2014	KRION-6T	Au ⁵¹⁺ , Tm ⁵⁰⁺	SC	4,7T	1,2 m
soon	KRION-T	tubular design	SC	5T	1,2 m
soon	KRION-N1	special for NICA	SC	5T	1,2 m

2. Principle of EBIS/ESIS operation

1. Electron impact ionization

 $X^{(n)+} + e \rightarrow X^{(n+1)+} + 2e$ $P_{q \rightarrow q+1} = \sigma_{q \rightarrow q+1} (j\tau_i),$

- $P_{q \rightarrow q+1}$ probability of the charge state gain
- $\sigma_{q \rightarrow q+1}$ effective cross section of ionization

 $j\tau_i$ - ionization factor

The ionization factor needed to obtain the ion of given charge state:

$$j\tau_i = \sum_{q=1}^{\overline{q}-1} \sigma_{q \to q+1}^{-1}$$

2. Confinement of the ions for step by step ionization (ion trap)

3. Characteristics of the electron beam required for ionization

4. The difference between EBIS and ESIS

EBIS:

- one pass of each electron is used
- high e-beam current is needed to have high j
- electron collector should dissipate high power, water cooling is needed
- high power consumption

EBIS in reflex mode of operation \rightarrow ESIS:

- 100~200 passes of each electron are used
- ~10 mA e-beam current is needed
- electron reflector instead of electron collector
- tiny heating, minimal power consumption, no special cooling

5. Electron string phenomenon

- reflex mode of operation doesn't suits well for efficient ionization because of instability
- under very specific conditions the stability can be achieved
- the stable mode of operation was called "electron string"
- transition to the electron string mode goes through strong instability and has 2 steps

Electron charge accumulated at different e-beam currents from the gun (5, 20, 50 and 300 uA)

Effect of the electrong string formation

6. Design of the KRION-6T

The design was based on the developments made first for the KRION-2

Solenoid winding machine

One of the short test solenoids

Electrode system of the KRION-6T

7. KRION-6T on the test bench

Specifications of KRION-6T

Length of the superconducting solenoid Number of layers Induction Current in the solenoid Field on the axis in the middle (Bmax) Length of the main ion trap Maximum energy of the electrons Emitter material Electron current from the gun Capacity of the ion trap 1,2 m 24 layers ~10 H 90 A (105 A planned) 5,4 T (6T planned) 1 m 10 keV (11,5 keV with trap potential lift) IrCe up to 30 mA up to 22 nC

8. Results achieved on the test bench

- the ${\bf j}{\bf r}$ ionization factor is the most important value giving information about the performance of the ESIS

- impossible to measure directly the electron string current, but possible to measure **effective jT**, using the extracted ions spectrum.

Ion specious	Effective electron string current density j , A/cm ²
Kr ¹⁵⁺	665
Kr ¹⁸⁺	591
Kr ^{24,6+}	847
Xe ^{23,2+}	1090
Xe ^{24,9+}	1579
Xe ^{25,4+}	1587
Tm ^{40,8+}	1092

Examples of number of particles per pulse and times of ionization for different ions

C ⁴⁺	7x10 ⁹	-
Xe ⁴²⁺	5x10 ⁹	350 ms
Xe ³²⁺	-	40 ms
Tm ⁵⁰⁺	3x10 ⁷	-
Au ³³⁺	_	30 ms

The new KRION-6T ion source has much higher effective **j** (up to 1600 A/cm²) in comparison with the KRION-2 which had only 200 A/cm². Another typical EBIS devices have only 100 - 300 A/cm².

9. KRION-6T connected to the accelerator

- First time KRION-6T was in operation at Nuclotron at 50th run in May-June 2014 The intensity of the Ar¹⁶⁺ beam was 3,9x10⁷ ppp.

KRION-6T on the high voltage platform of the LU-20

10. Technical results achieved on Nuclotron

Profiles and extracted beam intensity 7,62x10⁸

Intensity of the circulating beam 3,5x10⁸

78Kr²⁶⁺ 75 ms 1x10⁷

11. Physical results achieved with using of the beams from KRION-6T

Statictics of BM@N:

Beam of Ar with energie of 3,2 GeV/u:

Cu	32,29x10 ⁶ events
Al	35,88x10 ⁶ events
Sn	30,75x10 ⁶ events
Pb	14,28x10 ⁶ events
С	12,12x10 ⁶ events

Beam of Kr with energie of 2,3 GeV/u:

Cu	1,28x10 ⁶ events
AI	2,14x10 ⁶ events
Sn	1,08x10 ⁶ events

Beam of **Kr** with energie of **3,2** GeV/u:

Cu	14,43x10 ⁶ events
Al	13,27x10 ⁶ events
Sn	13,66x10 ⁶ events
Pb	3,48x10 ⁶ events

Beam of **Kr** with energie of **2,94** GeV/u: Cu 2,37 x10⁶ events

Process searched at SRC-BM@N experiment

Statistics of SRC-BM@N:

C beam with energy of 3,17 GeV/u: H₂ 13,05 x10⁶ events

Thank you for your attention