ICA Acceleration complex and magnet factory

What are accelerators used for?

-Accelerators for Americas Future Report, pp. 4, DoE, USA, 2011

- Radiotherapy accelerators
- Ion implanters, surface & bulk modification
- Industrial processing and research
- Low energy accelerators for research
- Medical radioisotope production
- Synchrotron light sources
- High energy accelerators for research (E>1GeV)

There are roughly 35,000 accelerators in the world (Above 1 MeV...)

M. Shandov

M. Shandov

Design trajectory

- Particle motion will be perturbatively expanded around the design trajectory or orbit
- This orbit can be over 10¹⁰ km in a storage ring

Separation of fields: Lorentz force $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

- Magnetic fields from static or slowly-changing magnets
 - transverse to design trajectory \overline{x} , \overline{y}
- Electric fields from high-frequency RF cavities
 - In the direction of design trajectory \overline{s}

Convenient units

$$\Delta W = qV_0$$

$$1eV = (1.602 * 10^{-19}C)(1V) = 1.602 * 10^{-19}J$$

$$1MeV = 1.602 * 10^{-13}J$$

$$1GeV = 1.602 * 10^{-10}J$$

- How much is TeV?
 - Energy to raise 1g about 16 µm against gravity
 - Energy to power 100W light bulb 1.6 ns
- But many accelerators have 10¹⁰⁻¹² particles
 - Beam "instantaneous power" of thousands or millions of Joules

$$(1.602 * 10^{-19}J) * 10^{12} * 10^{11} = 1.602 * 10^{4}$$
$$W = \frac{mv^{2}}{2} \Rightarrow m = \frac{2W}{v^{2}}$$
$$\frac{1.602 * 10^{-7}J * 10^{11} * 2}{(331^{m}/s)^{2}} \approx 0.292kg$$

Energy evolution

The types of machines are distinguished by the velocity of particles that are accelerated and by the mass of particles accelerated

M. Shandov

From electrostatic to RF acceleration

- What about putting on AC voltage?
 - Attach consecutive electrodes to opposite polarities of ACV generator
 - Electric fields between successive electrodes vary sinusoidally
 - Consecutive electrodes are 180 degrees out of phase (π mode)
- At the right drive frequency, particles are accelerated in each gap
 - While polarity change occurs, particles are shielded in drift tubes
 - To stay in phase with the RF, drift tube length or RF frequency must increase at higher energies

E Circular accelerators

Resonant Linac structure

- Wideroe linac: π mode
- Alvarez linac: 2π mode
- Need to minimize the excess RF power (heating)
 - Make drift tubes/gaps resonant to RF frequency
 - In 2π mode, currents in walls separating two subsequent cavities cancel; tubes are passive

Wideroe structure

M. Shandov

The synchrotron

- In synchrotrons, the particles are accelerated along a closed, circular orbit and the magnetic field which bends the particles increases with time so that a constant orbit is maintained during acceleration
- The synchrotron concept was proposed for the first time in 1943 by the Australian physicist Mark Oliphant

• Uniform circular motion is maintained via centripetal acceleration:

$$\frac{mv^2}{\rho} = qvB \Rightarrow B\rho = \frac{p}{q} \Rightarrow \rho = \frac{1}{q} \left(\frac{p}{B}\right), p = \beta\gamma m_0 c$$

• For a proton synchrotron, the injected beam is not yet relativistic, so the RF accelerating frequency both ramp with particle velocity (β) and particle momentum (p) too:

$$f_{rev} = \frac{\beta c}{2\pi\rho}$$
; $f_{rf} = 2\pi h f_{rev} = \frac{h\beta}{\rho}$, $h \equiv harmonic number$

• For an <u>electron synchrotron</u>, the injected beam is already relativistic, so only the magnetic field changes with beam energy

M. Shandov

NICA The largest weak-focusing synchrotrons

LHEP

The Synchrophasotron 1957-2003, VBLHEP, JINR, USSR, 10 GeV, 36000 tons The Bevatron 1954-2009, LBNL, USA, 6.3 GeV, 10000 tons

M. Shandov

Two serious problems

These machines were getting way too big

- Magnets were grater than 10,000 tons
- Apertures scale linearly with machine size, energy (length/circumference scales linearly with energy at fixed field strength too...)

Fixed target energy scaling is painful

• Available CM energy only scales with $\sqrt{E_{beam}}$

Accelerator size grew with the square of desired CM energy

• Something had to be done!!!

Strong Focusing (1952) and Colliders (1958-62 ish) to the rescue!!!

M. Shandov

Beam focusing

S

Ν

Ν

S

Weak focusing Strong focusing

• Suppose two particles start the acceleration process. One has exactly the correct energy, position and angle, so that it is properly accelerated. The accompanying particle has slightly different starting parameters. Some way of ensuring that non-perfect particles are also accelerated was needed

Fixed target vs. colliders

Fixed target

Collider

 $E_{cm} \approx \sqrt{2E_1(m_{02}c^2)}$ Much of the energy is lost in the target and only partial results in usable secondary particles

$$E_{cm} \approx 2\sqrt{E_1E_2} \approx 2E \ if E_1 = E_2$$

All energy will be available for particle production

M. Shandov

Accelerator systems

M. Shandov

Why superconductivity?

Abolish Ohm's law

- no power consumption (although need refrigeration power); high current density; ampere turns are cheap
- lower running cost; energy savings; smaller, lighter, cheaper magnets; reduced capital cost; higher magnetic fields economically feasible ⇒ new research possibilities; etc.

M. Shandov

Magnet factory

November 28, 2016

M. Shandov

Linear accelerators

LU-20

q/A	0.5	0.3	
Injection energy, keV/u	61.8	103	
Output energy, MeV/u	5		
Transmission, %	~75	~50	
Frequency, MHz	145.2		
Operating mode	2βλ		

q/A	6.25 (Au ³²⁺)
Injection energy, keV/u	17
Output energy, MeV/u	3.2
Transmission, %	≥80
Frequency, MHz	100.625

HILac

M. Shandov

Synchrotrons

Booster

The arc lattice	DFO, cells
Magnet rigidity, T/m	25
Circumference, m	211.2
Output energy, Au ³¹⁺ , MeV/u	600
Momentum dispersion, $\Delta p/p$	± 0.010
Intensity, ions	2-4 •10 ⁹

The arc lattice	FODO, cells
Magnet rigidity, T/m	45
Circumference, m	251.5
Output energy, Au ⁷⁹⁺ , GeV/u	4.5
Momentum dispersion, $\Delta p/p$	± 0.010
Intensity, ions	2•10 ⁹

Nuclotron

Fixed targets hall

M. Shandov

The storage ring

The arc latticeFODO, cellsNumber of bunches22	Circumference, m	503.04		
Number of bunches 22	The arc lattice	FODO, cells		
	Number of bunches	22		
Momentum dispersion, $\Delta p/p$ ± 0.010	Momentum dispersion, $\Delta p/p$	± 0.010		
Ion energy, Au⁷⁹⁺,GeV/u 1 3 4.5	Ion energy, Au ⁷⁹⁺ ,GeV/u	1	3	4.5
Luminosity, $cm^{-2} \cdot s^{-1}$ 0.6·10 ²⁵ 1·10 ²⁷ 1·10 ²⁷	Luminosity, cm ⁻² ·s ⁻¹	0.6·10 ²⁵	1.10^{27}	1.10^{27}
IBS growth time IBS, s 160 460 1800	IBS growth time IBS, s	160	460	1800

M. Shandov

M. Shandov

The cyclotron: different points of view

From LBNL Image Library Collection by Dave Judd and Ronn MacKenzie

... the visitor

... the laboratory director

THANK YOU FOR ATTENTION !!!

M. Shandov

M. Shandov

Potential-drop accelerators

First Open Day of the NICA Complex, JINR, Dubna, October 31, 2018

HEP

The cyclotron

- Lawrence applied Wideroe's idea in a new form. Nobel prize, 1939
- Uniform circular motion is maintained via centripetal acceleration:

$$\frac{mv^2}{r} = qvB \Rightarrow r = \frac{mv}{qB}$$

• The revolution period and frequency are do not depend on particle velocity:

$$T = \frac{2\pi m}{qB}; f = \frac{qB}{m}$$

- The particle is in synchronism with the time-varying electrical field
- Cyclotrons can accelerate proton energies up to 20-30 MeV.
- The situation becomes more complicated at higher energies due to the increase in relativistic mass (get out of synchronism)

The synchro-cyclotron

- Veksler and McMillan showed, independently, that by adjusting the frequency of the applied voltage to the decreasing frequency of the rotating protons, it was possible to accelerate the protons to several hundred MeV (the synchro-cyclotron can only accelerate a single "bunch" of particles)
- By design there is a synchronous phase Φ_s that gains just enough energy to hit phase Φ_s in the next gap
- P_{1,2} are fixed points: they "ride the wave" exactly in phase
- If increased energy means increased velocity (below transition)
 - M_1 , N_1 will move towards P1 (local stability) => phase stability
 - M_2 , N_2 will move away from P2 (local instability)
- Vice versa for above transition

The betatron

- Electrons (beta particles) are accelerated by rotational electric field generated by induction from time-varying magnetic field (Faraday's law)
- Beam accelerate half the time!
- Wideroe's betatron condition: $|B(t)| = \frac{1}{2} \langle |B(t)| \rangle + |B_0|$
- Early proofs of stability: weak focusing and betatron motion
- Betatrons produced electrons up to 300+ MeV
 - Early materials and medical research
 - Also produced medical hard X-rays and gamma rays
- Betatrons have their challenges
 - Linear aperture scaling
 - Large stored energy/impedance
 - Synchrotron radiation losses
 - Quarter duty cycle
 - Ramping magnetic field quality

The microtron

• Microtrons are like cyclotrons

G°U_≈

- but each revolution electrons "slip" by integer # of RF cycles
- Trades off large # of revs for minimal RF generation cost
- Bends must have very large momentum aperture

