15 minutes review of sterile neutrino

Dmitry V.Naumov

Anomalies in neutrino data Appearance LSND. $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$ $\langle E_{\nu} \rangle \approx 30 \text{GeV}$

• Excess of $\overline{\nu}_e$ • MiniBooNE. $\nu_{\mu}^{e}(\overline{\nu}_{\mu})$ fluxes peak at 600 (400) MeV with the same L/E as in LSNP. • Excess of ν_e and $\overline{\nu}_e$ (4.8 σ)

13% deficit of $\overline{\nu}_e$ from reactors (RAA) 6% deficit of ν_e and $\overline{\nu}_e$ from calibration sources SAGE and GALLEX

Disappearance

Oscillation hypothesis yields $\Delta m^2 \approx (1-2) eV^2$ and $\sin^2 2\theta \le (0.1-0.2)$ • Needed Δm^2 can not fit into 3-neutrino picture with two well measured

 $\Delta m_{12}^2 \simeq 7.5 \cdot 10^{-5} \text{ eV}^2$ $|\Delta m_{31}^2| \approx |\Delta m_{32}^2| \simeq 2.4 \cdot 10^{-3} \text{ eV}^2$

Just adding one more neutrino with $m_4^2 \approx (1-2) \, \mathrm{eV}^2$ is impossible because of measured widths of W,Z

 $\Gamma(W \to \ell \nu) \simeq 226 \text{ MeV}, \ \Gamma(W \to all) = 2085 \pm 2.1 \text{ MeV}$

 $\Gamma(Z \to \overline{\nu}\nu) \simeq 166 \text{ MeV}, \Gamma(Z \to all) = 2495 \pm 2.3 \text{ MeV}$

What is sterile neutrino?

This is a quantum state = superposition of mass eigenstates $\nu_1, \nu_2, \nu_3, \nu_4, \dots$ with

 $\mathscr{A}(\nu_s + W \to \mathscr{C}) = \mathscr{A}(\nu_s + Z \to \nu_s) = 0$

Meanwhile, each of \(\nu_1, \nu_2, \nu_3, \nu_4, \ldots\) does interact
 Sterile state as well as flavor eigenstates are not true particles since their fields do not obey the Dirac equation

$$\begin{bmatrix} \nu_L^f \\ \nu_L^s \\ \nu_L^s \end{bmatrix} = \begin{bmatrix} V_{3\times3} & K_{3\times1} \\ U_{1\times3} & M_{1\times1} \end{bmatrix} \begin{bmatrix} \nu_L^m \\ \nu_L^4 \\ \nu_L^4 \end{bmatrix}$$

What is sterile neutrino?

In QFT neutrino masses require ν_R
 <u>Three</u> generations of neutrinos —> <u>three</u> ν_R
 Sterile state emerge if there are four (or more) ν_R and still <u>three</u> charged leptons. This is the main trick!

Confusions in terminology

- ν_R is sterile because it has zero EW charges.
 ν^S_L is a sterile combination of four mass eigenstates ν₁, ν₂, ν₃, ν₄, ...
- ${\it o}$ ν_4 is called sterile in cosmology silently assuming vanishing $|V_{\alpha 4}|^2 \ll 1$

How sterile state can be observed

- In neutrino oscillation as a

 - Both in charged and neutral currents Deficit of the rate
 E/L oscillation pattern
 - Loss of coherence could be important for eV scale neutrino

Non unitarity of $V_{3\times 3}$ In cosmology

- ν_4 is an additional relativistic degree-of-freedom 0
- Impact Big-Bang-Nucleosynthesis 0
- Many observables including

$$\sum m_i^{\nu} = m_1^{\nu} + m_2^{\nu} + m_3^{\nu} + m_4^{\nu}$$

Cosmology rules out SBL best-fit

Effective density parameters	Planck 2015 (TT+lowP+lensing) + BAO		ΔN _{eff}	1.2	• 		0.5	1eV	3 +1 SBL best fit		
∆N _{eff} (extra contribution to density <i>before</i> NR transition)	<0.7 (95%CL)			0.9					2 eV		
m _{eff} (extra contribution to density <i>after</i> NR transition)	< 400 meV (95%CL)			0.3	0	0.4 M	0.8 eff (eV))	5	0	

For Dodelson-Widrow neutrinos, physical mass m = $m_{eff}/\Delta N_{eff}$

TIK Institute for Theoretical Particle Physics and Cosmology

Slide credit to J.Lesgourgues (NeuTel-2017)

Cosmology and neutrinos - J. Lesgourgues

24

Summary

- There are allowed regions with $\Delta m_{41}^2 \approx (1-2) \mathrm{eV}^2$
- The allowed parameters space is in the sensitivity regions of running experiments
- Cosmology already rules out SBL best-fit
- There are however various claims worth to follow in more details. Please, refer to the next couple of talks

More details

Backup slides

Maive picture:

- Sterile neutrino does not interact with W,Z
- Active neutrinos ν_e, ν_μ, ν_τ could oscillate into sterile ν_s (and vice-versa)
- Why naive?
 - Flavor neutrinos ν_e, ν_μ, ν_τ are not real particles.
 Their fields do not satisfy Dirac equation.
 - True particles are massive neutrinos ν_1, ν_2, ν_3
 - Textbook's mantra: «Mass eigenstates propagate, flavor states interact» is out-dated.

Neutrino oscillation is due to interference of diagrams with virtual ν_1, ν_2, ν_3 Each of them interacts with W.Z ν_4 also must interact with W,Z. It can not appear out of nothing

External particles are wavepackets

A Diagrammatic treatment of neutrino oscillations D.V. Naumov, V.A. Naumov (Dubna, JINR). J.Phys. G37 (2010) 105014

How to make sterile neutrino in QFT?

Masses of fermions in the Standard Model

- EW sector is SU_L(2)xU(1) gauge invariant One generation $\begin{bmatrix} \nu_L \\ \ell_L \end{bmatrix} = \ell_R \quad \nu_R$ Fully sterile
- Gauge invariance requires fermions to be massless $m(\overline{\ell}_L \ell_R + h.c.)$ • Not allowed
- Masses are generated via Yukawa interactions and symmetry breaking by the Higgs mechanism $\lambda(\begin{bmatrix} \overline{\nu}_L & \overline{\ell}_L \end{bmatrix} \begin{bmatrix} 0 \\ \phi \end{bmatrix} \ell_R + \text{h.c.}) \rightarrow m(\overline{\ell}_L \ell_R + \text{h.c.}) + \dots$

Three generations

fields

Three generations of left Three generations of right fields

 $\begin{bmatrix} \nu_L^e \\ e_L \end{bmatrix} \begin{bmatrix} \nu_L^\mu \\ \mu_L \end{bmatrix} \begin{bmatrix} \nu_L^\tau \\ \tau_L \end{bmatrix} \leftarrow \mathbf{Massless fields}$ Yukawa interactions

 $\lambda^{\nu}_{\alpha\beta}(\begin{bmatrix} \overline{\nu}^{\alpha}_{L} & \overline{\ell}^{\alpha}_{L} \end{bmatrix} \begin{bmatrix} -\phi^{c} \\ 0 \end{bmatrix} \nu^{\beta}_{R} + \text{h.c.}) \rightarrow m^{\nu}_{\alpha\beta}(\overline{\nu}^{\alpha}_{L}\nu^{\beta}_{R} + \text{h.c.}) + \dots$ $\lambda_{\alpha\beta}^{\ell}(\begin{bmatrix} \overline{\nu}_{L}^{\alpha} & \overline{\ell}_{L}^{\alpha} \end{bmatrix} \begin{bmatrix} 0 \\ \phi \end{bmatrix} \ell_{R}^{\beta} + \text{h.c.}) \to m_{\alpha\beta}^{\ell}(\overline{\ell}_{L}^{\alpha}\ell_{R}^{\beta} + \text{h.c.}) + \dots$

$\begin{array}{l} \textbf{Diagonalization} \\ m^{\ell}, m^{\nu} & - \text{ are non-diagonal matrices} \\ \bullet & \textbf{Introduce four matrices} \\ \textbf{to rotate fields} \\ \mu_{L}^{\ell}, \ell_{L}^{\ell}, U_{R}^{\nu}, \nu_{R}^{\ell}, \nu_{R}^{\ell} \end{array}$

To make \$U_L^{\dagger}m^{\ell}U_R^{\ell}\$ and \$U_L^{\dagger}m^{\nu}U_R^{\nu}\$ diagonal matrices
 New massive fields mix generations in their interactions with W boson.
 The mixing matrix \$V^{PMNS} \equiv U_L^{\ell\dagger}U_L^{\nu}\$

Sterile neutrino

Three generations of left

Three generations of right

Assume again Yukawa interactions and non-diagonal 0 mass matrices Diagonalize them and derive the mixing unitary 0 matrix

$$\begin{bmatrix} V_{3\times3} & K_{3\times1} \\ U_{1\times3} & M_{1\times1} \end{bmatrix}$$

Sterile neutrino • «Flavor» ν^f and mass ν^m eigenstates read $\begin{bmatrix} \nu_L^f \\ (\nu_R^s)^c \end{bmatrix} = \begin{bmatrix} V_{3\times3} & K_{3\times1} \\ U_{1\times3} & M_{1\times1} \end{bmatrix} \begin{bmatrix} \nu_L^m \\ \nu_L^4 \\ \nu_L^4 \end{bmatrix}$

- **Outarity of 4x4 mixing matrix yields** $V^{\dagger}V + U^{\dagger}U = 1_{3\times3}$ $U^{\dagger}U + M^{\dagger}M = 1_{1\times1}$ $K^{\dagger}K + M^{\dagger}M = 1_{1\times1}$ $V^{\dagger}K + U^{\dagger}M = 0_{3\times1}$ $UV^{\dagger} + MK^{\dagger} = 0_{1\times3}$
- The interaction amplitude of sterile state vanishes $\mathscr{A}(\nu_s + W^- \to \mathscr{C}_{\alpha}^-) = (UV^{\dagger} + MK^{\dagger})_{1 \times \alpha} \mathscr{A}_0 = 0$