KM3NET: MACHINE LEARNING

Chiara De Sio (Univ. Salerno) for the KM3NeT Collaboration

<u>cdesio@unisa.it</u>

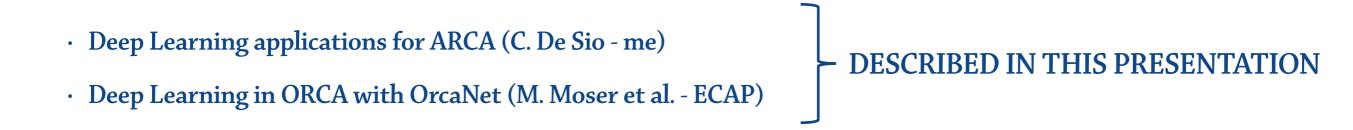
KM3NeT

2 - 4 October 2018 Dubna Russia

VLVnT - 2018 Very Large Volume Neutrino Telescopes

(Some) Existing Machine Learning Applications for KM3NeT

- MVA in Point-Source Analysis (Credits A. Trovato)
 - · Random Forest for 3-class Prediction (Source, Atm ν , Atm μ)
- High Energy Starting Muons (Credits K. Pikounis)
 - Boosted Decision Trees for 2-class Prediction (Signal, Background)
- EReNN: Energy Reconstruction with Neural Networks (Credits E. Drakopoulou, et al.)
 - Multi-Layer Perceptron for Energy Reconstruction
- Shallow and Deep Learning Applications in KM3NeT (Credits S. Geißelsöder et al.)
 - Multiple applications of Machine and Deep Learning Models in Supervised and Unsupervised Learning settings



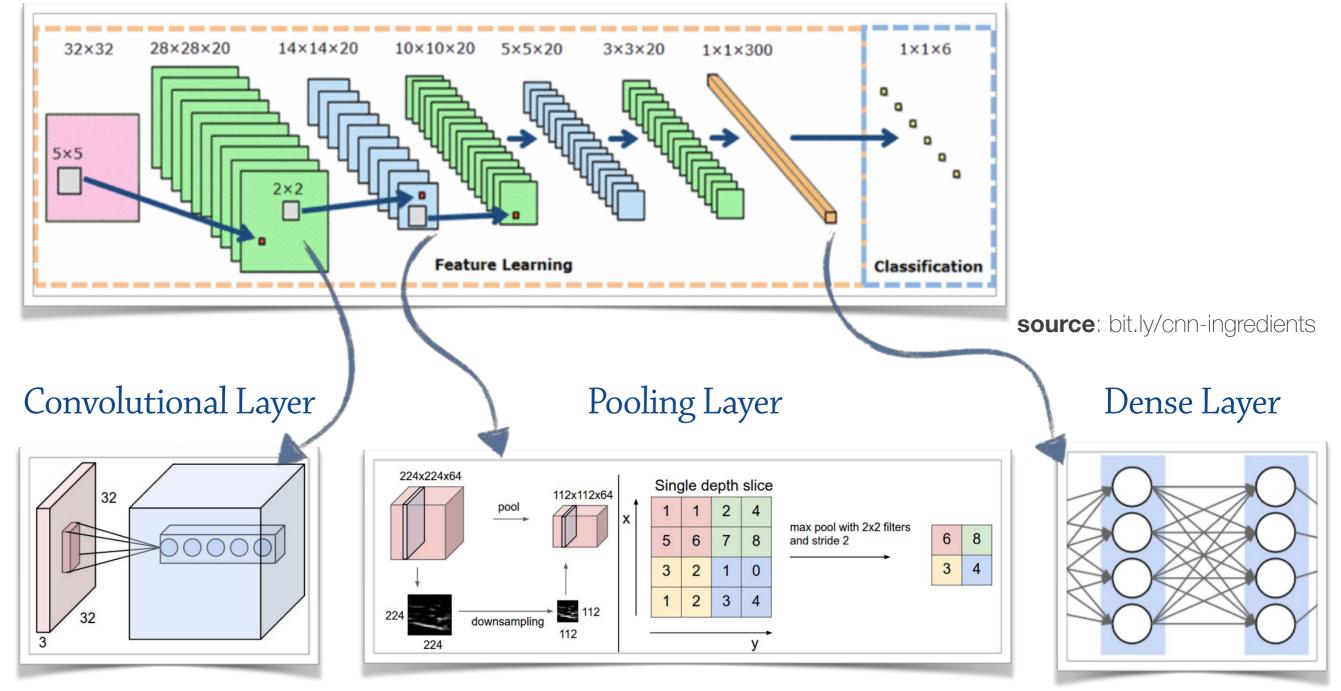
Deep Learning Applications for KM3NeT-ARCA

Four learning tasks:

- 1) Up-going/Down-going particle Classification
- 2) $v_{\mu}CC / v_eCC$ interaction Classification
- 3) Particle Energy Estimation
- 4) Particle Direction Estimation (Z component)

- Using **triggered hits** and times as input data
- Convolutional Neural Network models have been **designed** for each task

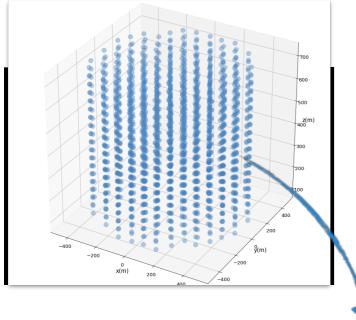
Convolutional Deep Networks (CNN): Main Ingredients



Local Feature Maps Learning Downscaling and Space Invariant Features Learning Global Feature Learning & Prediction

DATA PREPARATION PREPARE DATA TO BE FED INTO NEURAL NETWORKS

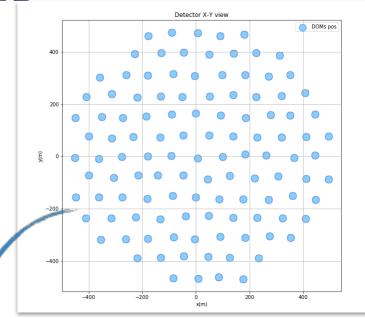
Space regularisation

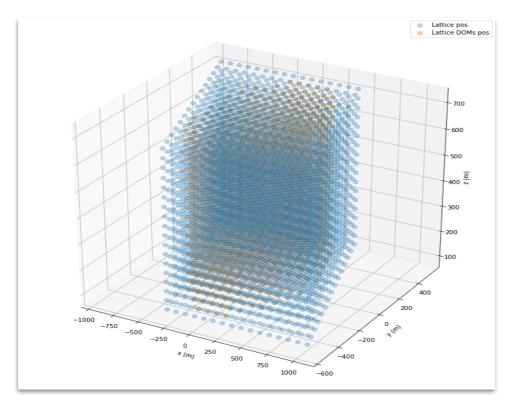


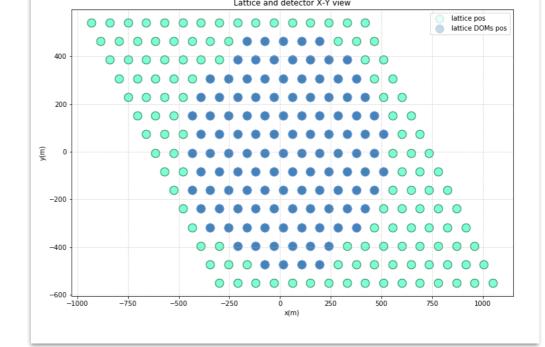
Regularised Detector Structure^{*}

- **exactly** 90m spaced in (X,Y)
- **exactly** 36m spaced in Z

Regularised detector contained in **Lattice**





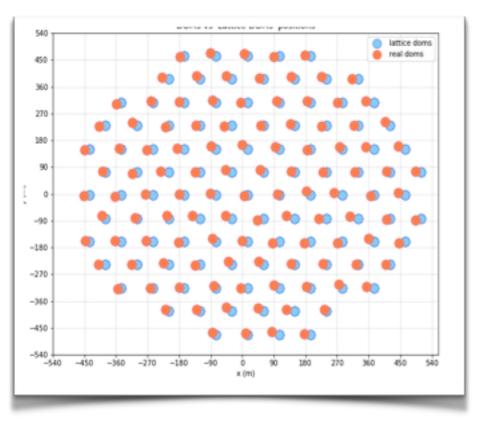


Regularised Detector XYZ-view

Regularised Detector XY-view

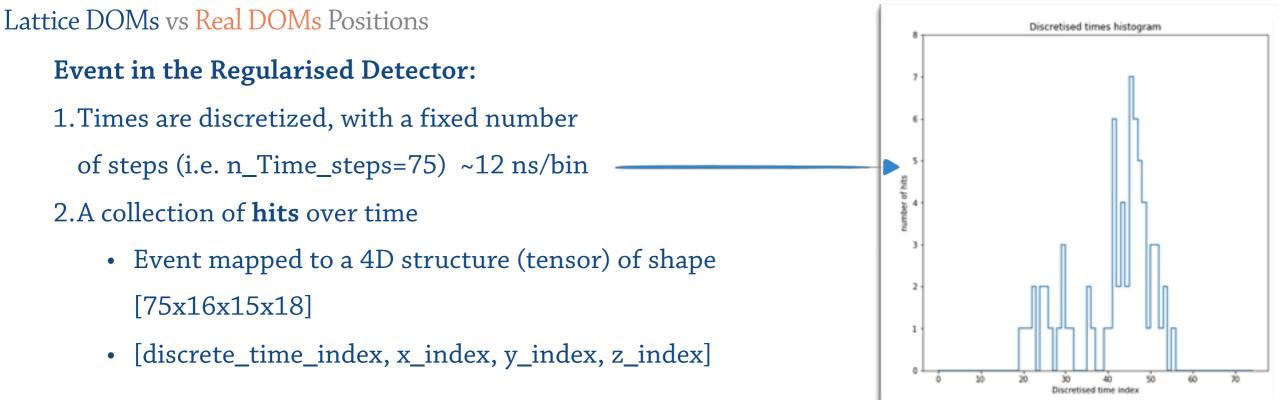
*Deviation from regularised structure can be introduced later as a next-order correction C. De Sio for the KM3NeT Collaboration – VLVnT 2018, Dubna

Event Definition



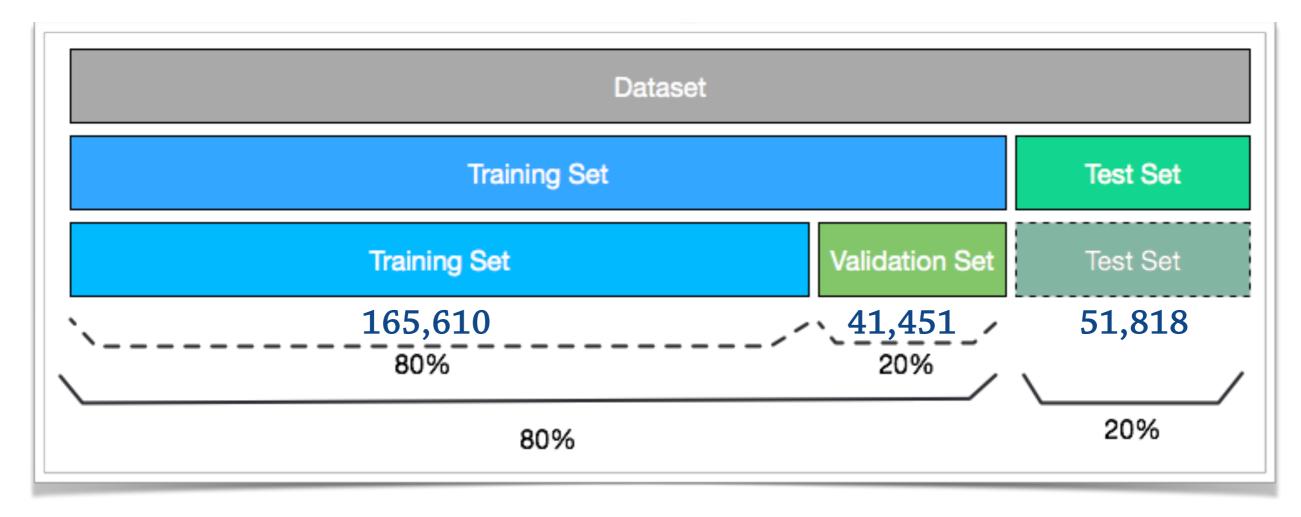
Reducing (useless and time consuming) sparsity in data

- Transforming DOM IDs into Lattice DOM IDs
 - a single DOM ID is mapped to an index in the [16x15x18] Lattice



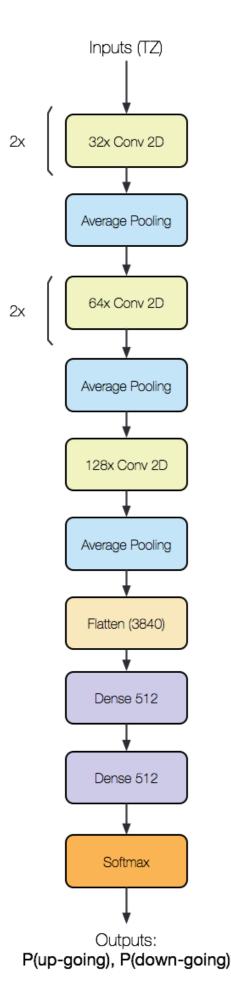
Dataset

258,879 total events (samples) arranged from 100 v_eCC + 100 $v_{\mu}CC$ files



LEARNING TASK 1. UP-GOING/DOWN-GOING NEUTRINO CLASSIFICATION

CLASSIFY UP-GOING AND DOWN-GOING NEUTRINOS ACCORDING TO THEIR Z-COORDINATE EVOLUTION OVER TIME



Model architecture and Input Data

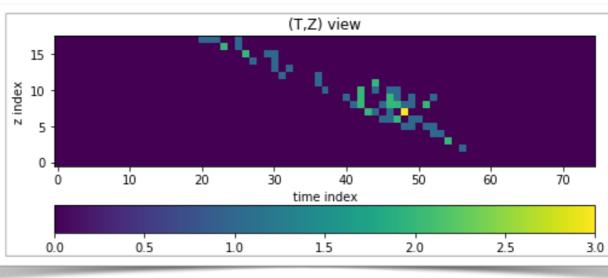
Labels

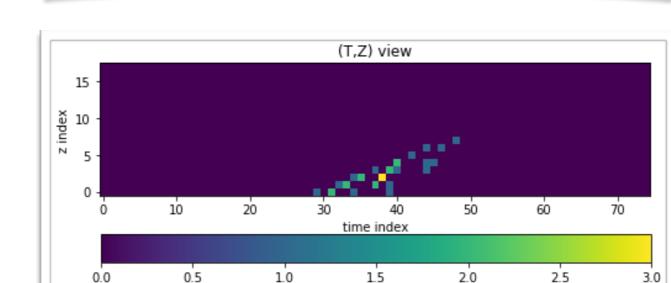
y: $\begin{cases} \cos(\theta_z) > 0 : "up-going"\\ \cos(\theta_z) \le 0 : "down-going" \end{cases}$

Input tensors reshaped to:

(T,Z): [n_samples,75,18]

Input array summed over X and Y axes



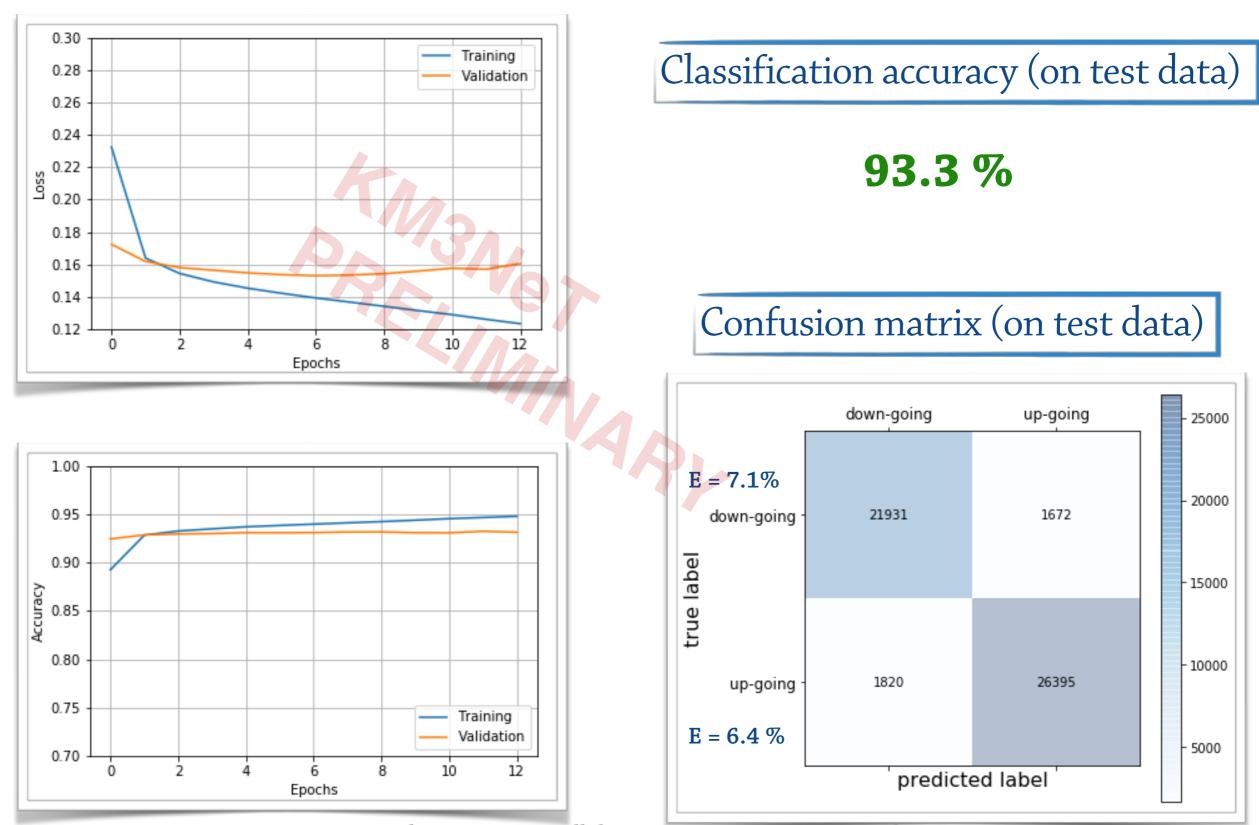


Up-going

Down-going

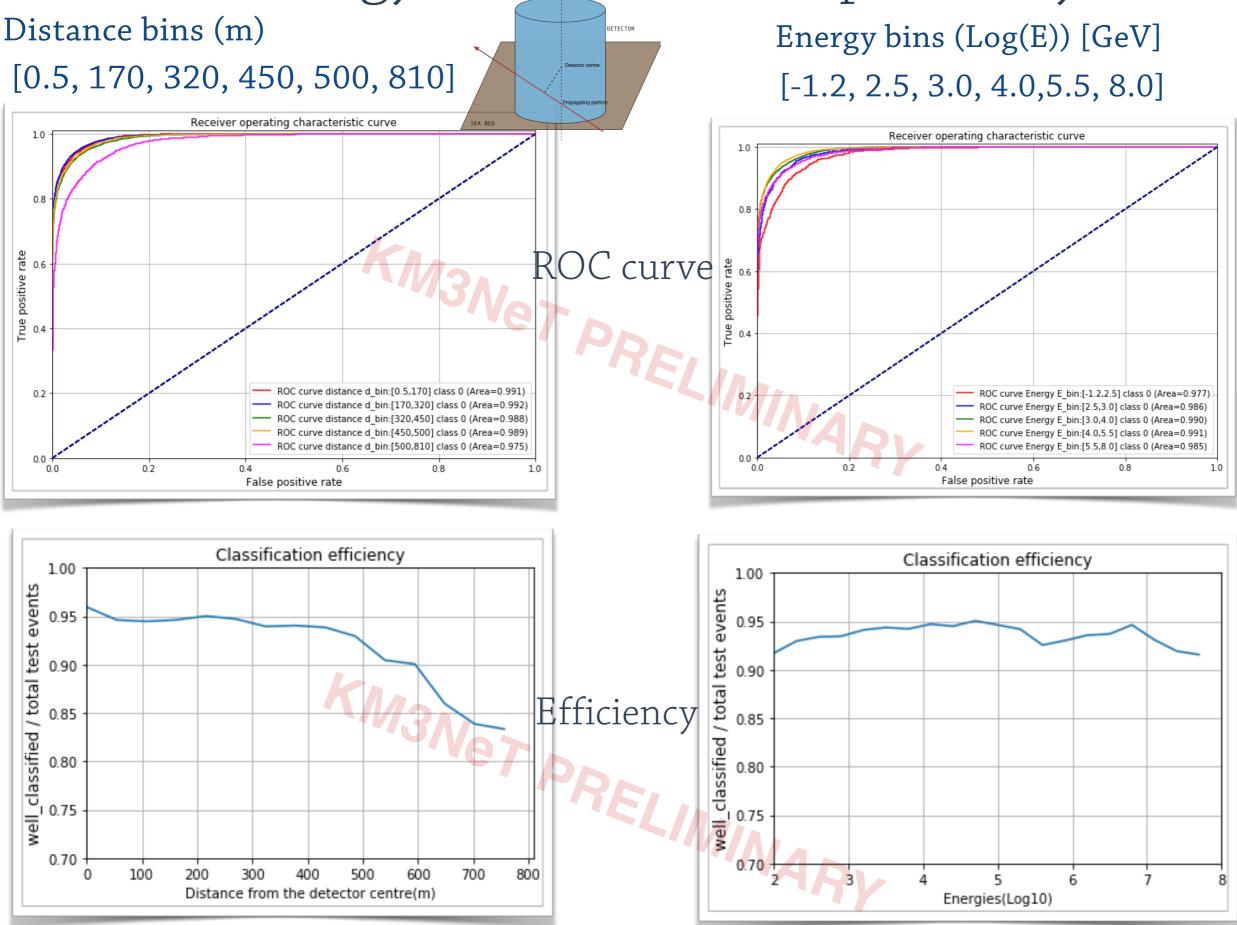
Classification results

Training history



C. De Sio for the KM3NeT Collaboration – VLVnT 2018, Dubna

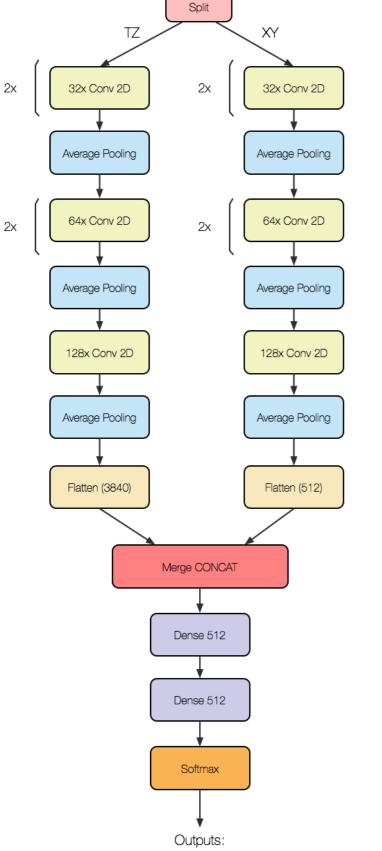
11



LEARNING TASK 2. $\nu_{\mu} CC / \nu_{e} CC$ **INTERACTION CLASSIFICATION**

CLASSIFY $\nu_{\mu}CC / \nu_{e}CC$ **INTERACTIONS BASED ON** THE SHAPE OF THE EVENTS AND THE EVOLUTION OF POSITIONS OVER TIME

Model architecture and Input Data



 $P(\nu\mu), P(\nu e)$

CNN model with parallel branches analysing (T,Z) and (X,Y) evolution separately, merged to extract common features

2 Input tensors of shapes:

(T,Z): [n_samples, discrete_time_index, z_index]

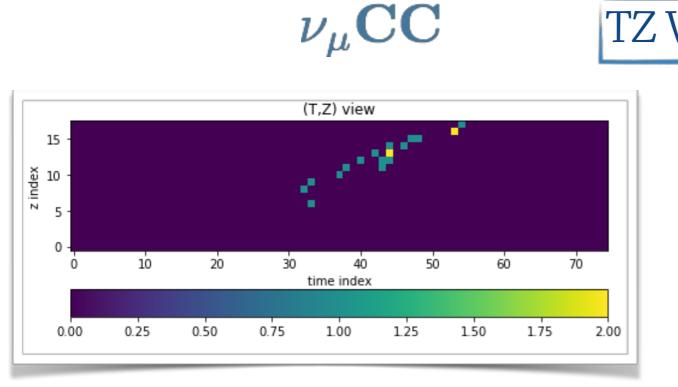
(X,Y): [n_samples, x_index, y_index]

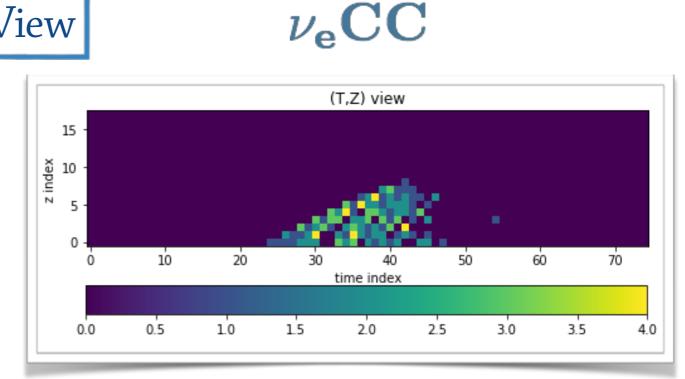
Labels

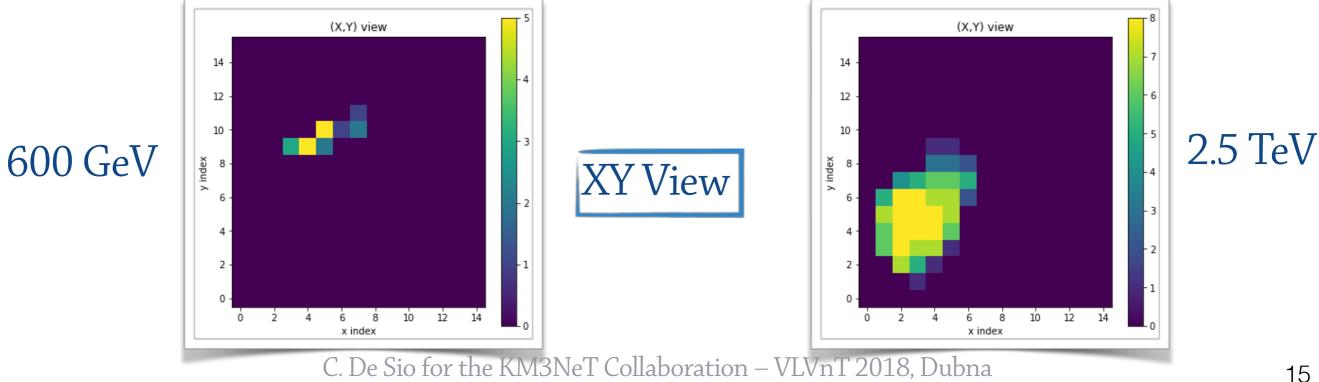
$$y = \begin{cases} 0: v_{\mu}CC \\ 1: v_{e}CC \end{cases}$$

Multiple Views of Events

TZ View

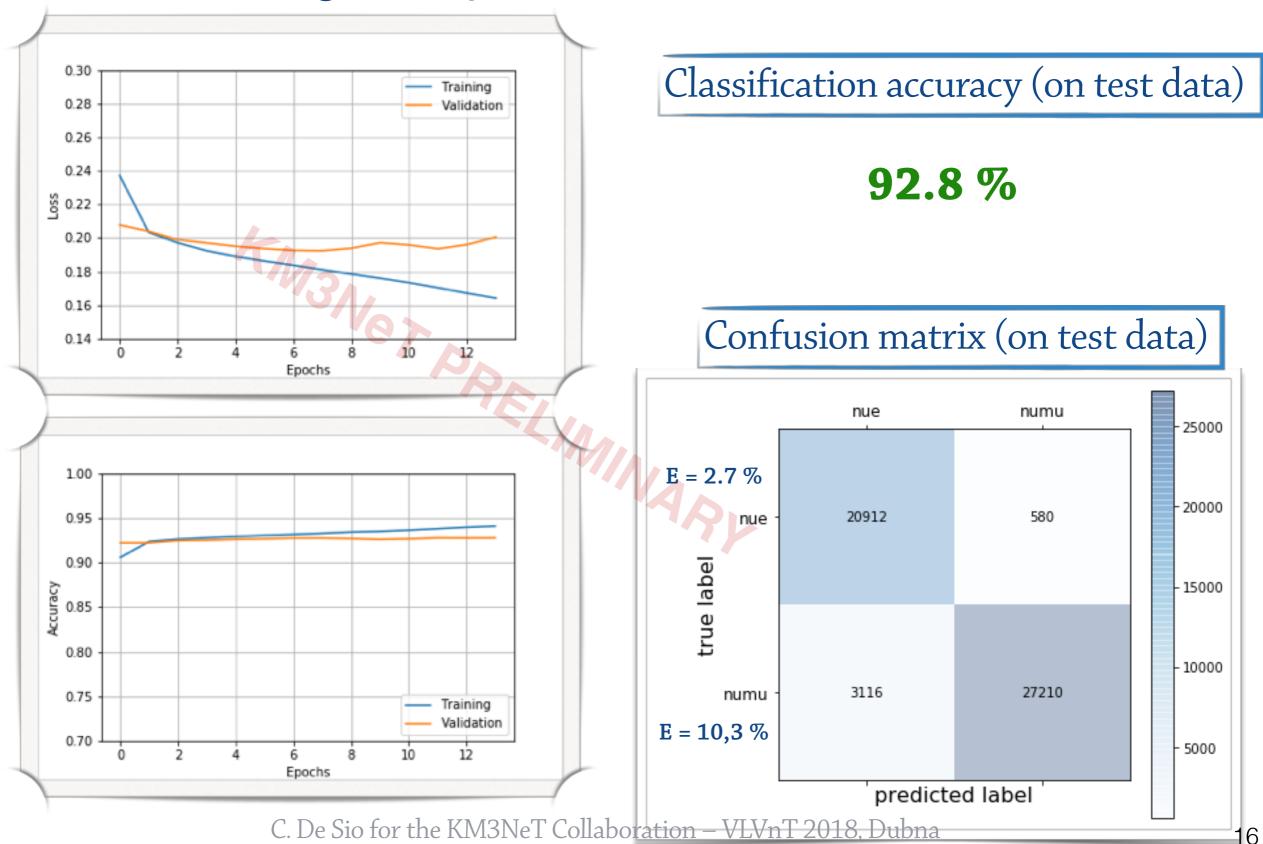






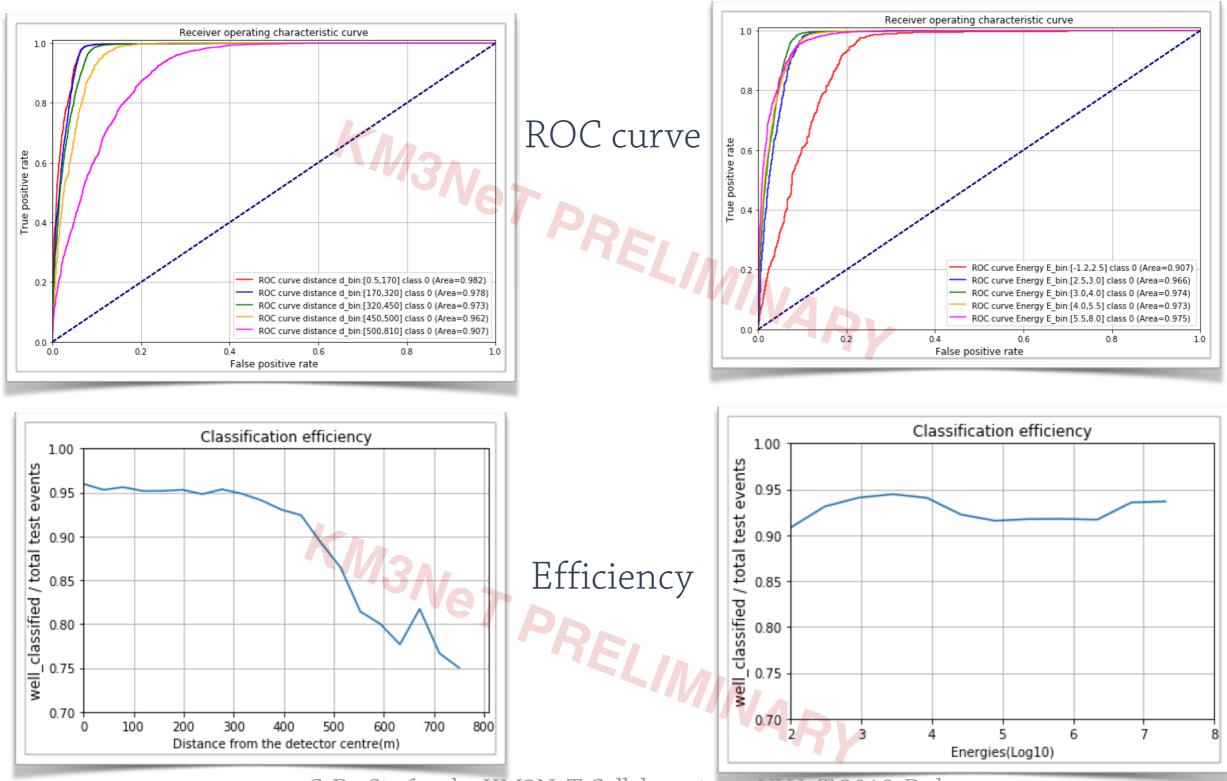
Classification results

Training history



Energy and Distance dependency

Distance bins (m) [0.5, 170, 320, 450, 500, 810] Energy bins (Log(E)) [GeV] [-1.2, 2.5, 3.0, 4.0, 5.5, 8.0]



LEARNING TASK 3. PARTICLE ENERGY ESTIMATION REGRESSION MODEL TO ESTIMATE NEUTRINO ENERGY (GEV)

Model architecture and Input Data Inputs (TXYZ)

CNN model with parallel branches analysing (T,Z) and (X,Y) evolution separately, merged to extract common features, fed into multiple fully connected layers

2 Input tensors of shapes:

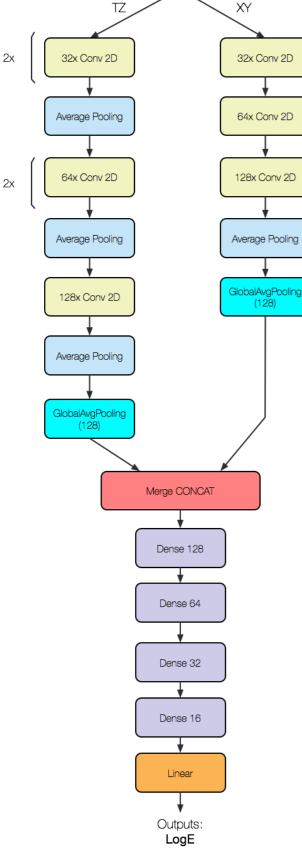
(T,Z): [n_samples, discrete_time_index, z_index]

(X,Y): [n_samples, x_index, y_index]

Labels:

Energy: MC truth

C. De Sio for the KM3NeT Collaboration – VLVnT 2018, Dubna



2x

Split

Results

Training history Estimated vs True Energy 0.40 Training Validation 0.35 7 0.30 Loss estimated (NN) log_10(Energy)[GeV] 0.25 0.20 20 15 10 0 5 Epochs Mean Squared Error (on test data) 3 0.22

r² score (on test data)

0.84

test dataset ($\nu_{\mu}CC + \nu_{e}CC$ events)

5

true log_10(Energy)[GeV]

6

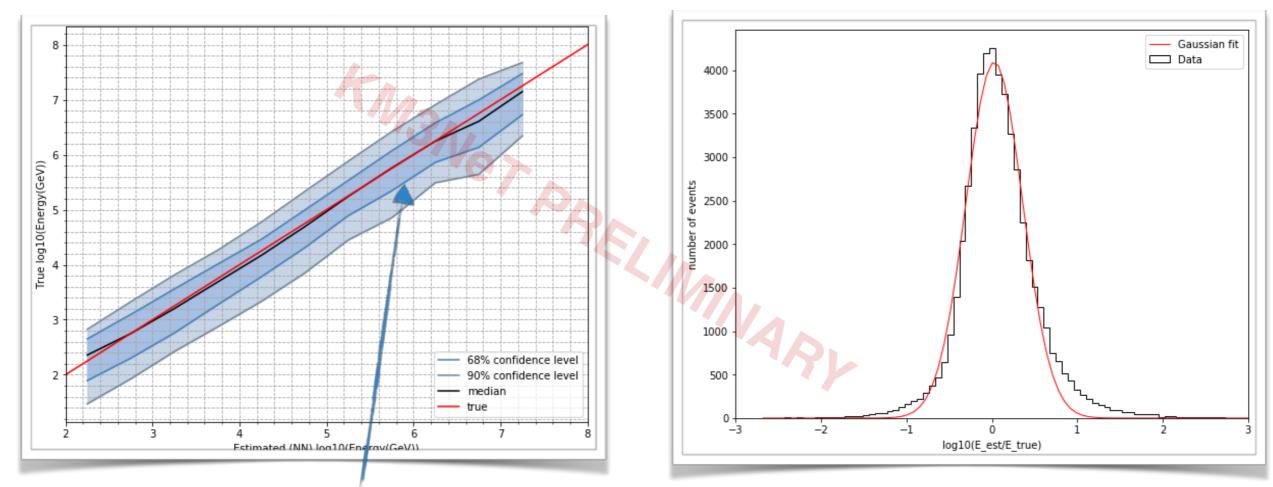
C. De Sio for the KM3NeT Collaboration – VLVnT 2018, Dubna

ż

Results

True vs Neural Network Estimated Energy

Energy resolution



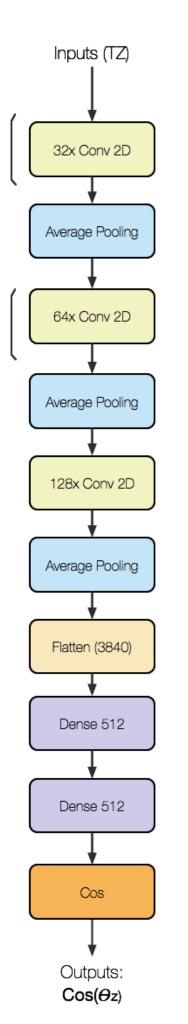
lack of statistics at high energy

Gaussian fit w/ μ = 0.03, σ = 0.33

test dataset ($\nu_{\mu}CC + \nu_{e}CC$ events)

LEARNING TASK 4. DIRECTION ESTIMATION (Z)

REGRESSION MODEL TO ESTIMATE Z-COMPONENT OF THE NEUTRINO DIRECTION



Model architecture and Input Data

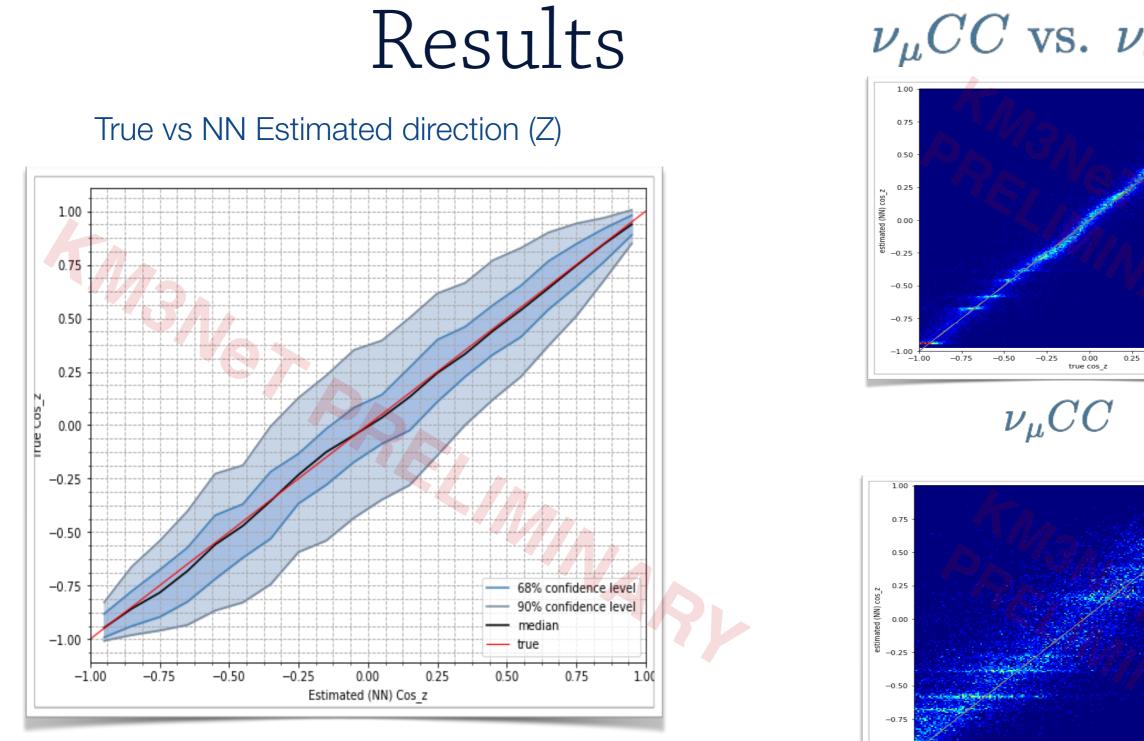
CNN model to analyse (T,Z) evolution and predict $cos(\theta_z)$ value

Input tensor reshaped to :

(T,Z): [n_samples, discrete_time_index, z_index]

Labels

 $\cos(\theta_z)$: MC truth



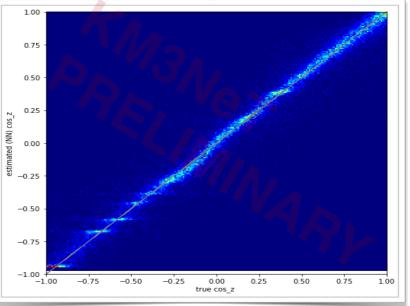
test dataset ($\nu_{\mu}CC + \nu_{e}CC$ events)

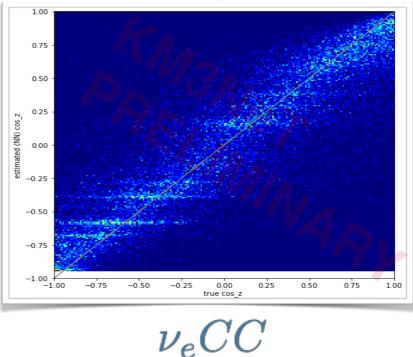
Mean Squared Error (on test data)

0.03

C. De Sio for the KM3NeT Collaboration – VLVnT 2018, Dubna

$\nu_{\mu}CC$ vs. $\nu_{e}CC$



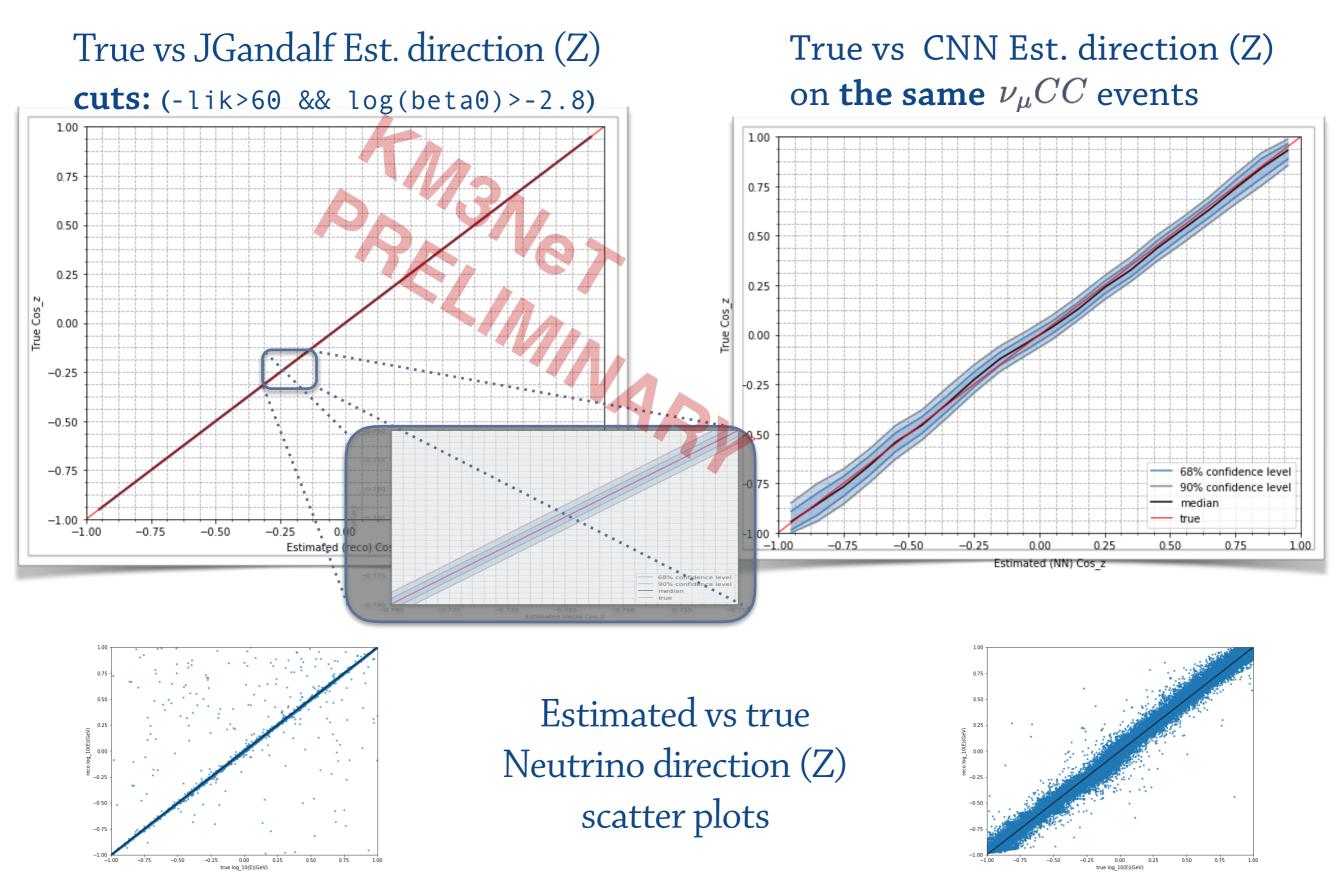


Muon neutrino event direction is better estimated w.r.t. electron neutrino direction

COMPARISON WITH THE OFFICIAL RECONSTRUCTION ALGORITHM

PERFORMANCES COMPARISON ON $\nu_{\mu}CC$ EVENTS TO COMPARE RESULTS WITH STANDARD TRACK RECONSTRUCTION ALGORITHM, WHEN APPLICABLE

Direction estimation (Z)



Comparison on Up-going/Down-going classification

- apply "labels" to reconstructed events:
 - $\cos(\theta_z) > 0$: "up-going"
 - $\cos(\theta_z) <= 0$: "down-going"
- Compare predictions

Accuracy on up-going/down-going classification

Official reco (JGandalf) (-lik>60 && log(beta0)>-2.8) CNN regression running test on $v_{\mu}CC$ events only

Classification Accuracy

Classification Accuracy

0.998

0.987

only $v_{\mu}CC$ events (selecting well reconstructed events) with quality cuts

Deep Learning Applications for KM3NeT-ORCA

Aim:

Multipurpose classification and regression studies in ORCA

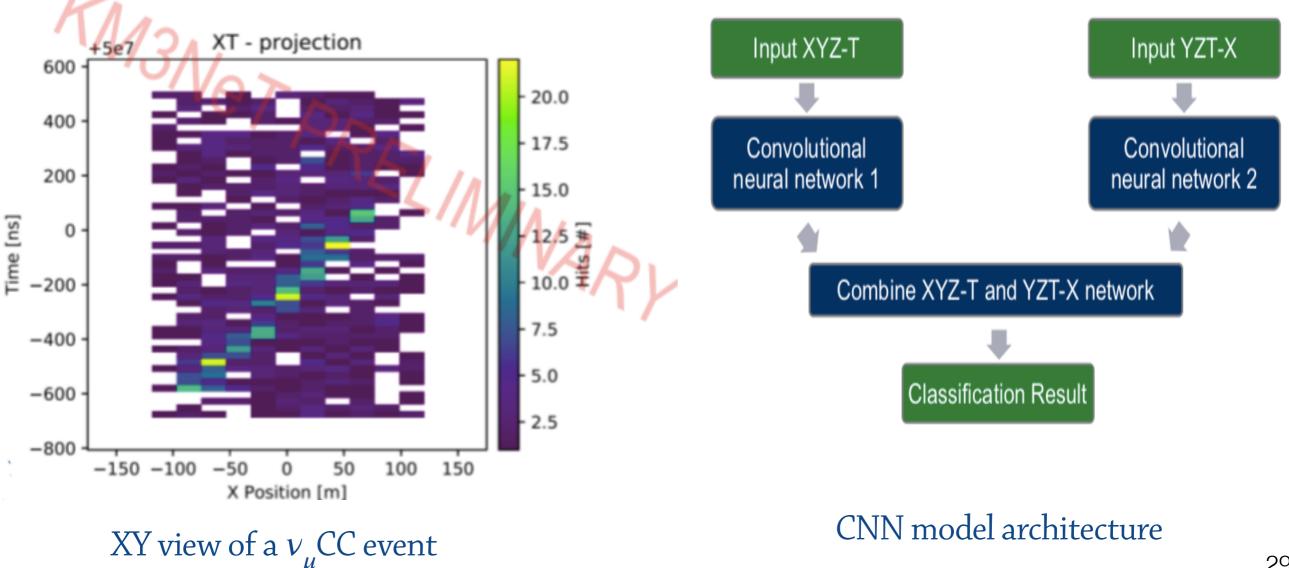
Task:

Reconstruct energy and direction, track-shower composition, PID

 Developed a Deep Learning track-shower classifier called OrcaNet, based on Convolutional Neural Networks

Deep Learning for ORCA with OrcaNet

- 6D information (XYZ, T, azimuth, zenith) projected to 4D subspace (neglect PMT direction)
- Space binning: 11x13x18
- 4 week training on HPC GPU Cluster (4xGTX 1080)



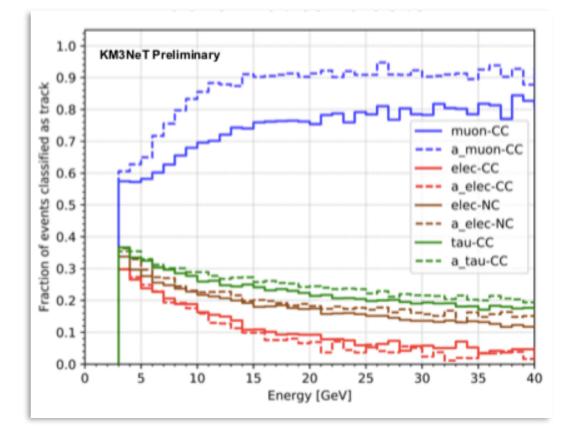
Time binning: 60 bins (~10 ns/bin)

•

•

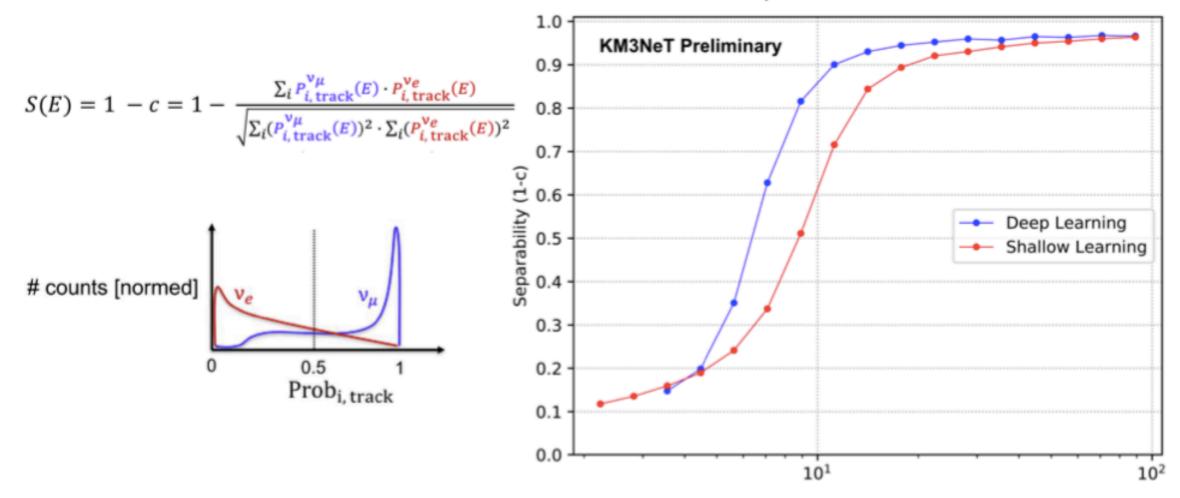
Results

Track/shower event classification No reconstruction output used



CNN **outperforms** RDF with human-selected features

Separability of track (ν_{μ} – CC) and shower (ν_{e} – CC) events



Conclusions and outlook

- ML Results are promising in these **first iterations**:
 - ML provides **stable estimations**, comparable and in some cases better than official reco
 - ML does not depend on any reconstruction algorithm: independent event study directly from raw data
- Room for improvement and a lot of work to do (detailed detector description, complete reconstruction, complete flavour identification) More results coming soon!
- KM3NeT expects to produce a DL toolset for CNN applications in ASTERICS (H2020) Possibly portable to other event-based experiments
- KM3NeT INFN groups to contribute with ML algorithms in Task 3.4 of ESCAPE (proposal)

Thanks a lot for your kind attention

Chiara De Sio cdesio@unisa.it