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(Some) Existing Machine Learning  
Applications for KM3NeT

• MVA in Point-Source Analysis (Credits A. Trovato) 

• Random Forest for 3-class Prediction (Source, Atm ν, Atm µ)  

• High Energy Starting Muons (Credits K. Pikounis) 

• Boosted Decision Trees for 2-class Prediction (Signal, Background)  

• EReNN: Energy Reconstruction with Neural Networks (Credits E. Drakopoulou, et al.)  

• Multi-Layer Perceptron for Energy Reconstruction 

• Shallow and Deep Learning Applications in KM3NeT (Credits S. Geißelsöder et al.)  

• Multiple applications of Machine and Deep Learning Models in Supervised and Unsupervised Learning settings 

• Deep Learning applications for ARCA (C. De Sio - me) 

• Deep Learning in ORCA with OrcaNet (M. Moser et al. - ECAP) 
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Deep Learning  
Applications for KM3NeT-ARCA

Four learning tasks:  

1) Up-going/Down-going particle Classification 

2)               /            interaction Classification 

3) Particle Energy Estimation 

4) Particle Direction Estimation (Z component)

• Using triggered hits and times as input data 

• Convolutional Neural Network models have been designed for each task

𝜈𝑒𝐶𝐶𝜈𝜇𝐶𝐶

C. De Sio for the KM3NeT Collaboration – VLVnT 2018, Dubna  3



Convolutional Deep Networks (CNN): Main Ingredients

source: bit.ly/cnn-ingredients

Convolutional Layer Pooling Layer Dense Layer

Global Feature Learning 
& Prediction

Downscaling and Space Invariant  
Features Learning

Local Feature Maps  
Learning
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DATA PREPARATION
PREPARE DATA TO BE FED INTO NEURAL NETWORKS
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Regularised Detector XY-viewRegularised Detector XYZ-view

Regularised Detector Structure* 
• exactly 90m spaced in (X,Y) 

• exactly 36m spaced in Z 

Regularised detector contained in Lattice

*Deviation from regularised structure can be introduced later as a next-order correction

Space regularisation
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Event Definition

Lattice DOMs vs Real DOMs Positions 

Reducing (useless and time consuming)  
sparsity in data 

• Transforming DOM IDs into Lattice DOM IDs 

• a single DOM ID is mapped to an index in the  
[16x15x18] Lattice

Event in the Regularised Detector: 

1.Times are discretized, with a fixed number  
of steps (i.e. n_Time_steps=75)  ~12 ns/bin 

2.A collection of hits over time  

• Event mapped to a 4D structure (tensor) of shape  
[75x16x15x18] 

• [discrete_time_index, x_index, y_index, z_index]
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258,879 total events (samples) arranged from  100              + 100             files

+ +

𝜈𝑒𝐶𝐶 𝜈𝜇𝐶𝐶

165,610 41,451 51,818

Dataset
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LEARNING TASK 1.  
UP-GOING/DOWN-GOING  
NEUTRINO CLASSIFICATION
CLASSIFY UP-GOING AND DOWN-GOING NEUTRINOS 
ACCORDING TO THEIR Z-COORDINATE EVOLUTION OVER TIME
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Model architecture and Input Data

Up-going

Down-going

Input tensors reshaped to: 

(T,Z): [n_samples, 75, 18]

Input array summed over X and Y axes

Labels 

              >0 : “up-going" 

              ≤0 : “down-going”{y:
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Training history

Classification accuracy (on test data)

93.3 %

Confusion matrix (on test data)

Classification results

E = 6.4 % 

E = 7.1% 

KM3NeT 
PRELIMINARY
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Energy and Distance dependency
Distance bins (m)  
 [0.5, 170, 320, 450, 500, 810]

Energy bins (Log(E)) [GeV]  
 [-1.2, 2.5, 3.0, 4.0,5.5, 8.0]

ROC curve
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KM3NeT PRELIMINARY

Efficiency
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KM3NeT PRELIMINARY



LEARNING TASK 2.  
                  INTERACTION 
CLASSIFICATION
CLASSIFY          /          INTERACTIONS BASED ON  
THE SHAPE OF THE EVENTS AND  
THE EVOLUTION OF POSITIONS OVER TIME

𝜈𝑒𝐶𝐶𝜈𝜇𝐶𝐶
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Labels 

0:  

1:{y =

CNN model with parallel branches analysing (T,Z) and 
(X,Y) evolution separately, merged to extract common 
features

2 Input tensors of shapes: 

(T,Z): [n_samples, discrete_time_index, z_index] 

(X,Y): [n_samples, x_index, y_index]

Model architecture and Input Data

𝜈𝑒𝐶𝐶

𝜈𝜇𝐶𝐶
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Multiple Views of Events 

TZ View

XY View
2.5 TeV600 GeV 
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Training history

E = 10,3 % 

E = 2.7 % 

Classification accuracy (on test data)

92.8 %

Confusion matrix (on test data)

KM3NeT PRELIMINARY
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Classification results
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Energy and Distance dependency
Distance bins (m)  

 [0.5, 170, 320, 450, 500, 810]
Energy bins (Log(E)) [GeV]  
 [-1.2, 2.5, 3.0, 4.0,5.5, 8.0]

ROC curve

Efficiency
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LEARNING TASK 3.  
PARTICLE ENERGY ESTIMATION
REGRESSION MODEL TO ESTIMATE   
NEUTRINO ENERGY (GEV)
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Labels: 

Energy: MC truth

CNN model with parallel branches analysing (T,Z) and (X,Y) evolution 
separately, merged to extract common features, fed into multiple fully 
connected layers

2 Input tensors of shapes: 

(T,Z): [n_samples, discrete_time_index, z_index] 

(X,Y): [n_samples, x_index, y_index]

Model architecture and Input Data
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Mean Squared Error (on test data)

Training history

0.22

r2 score (on test data)

0.84

Results
Estimated vs True Energy

 test dataset (                          events) 

KM3NeT PRELIMINARY
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Results

True vs Neural Network Estimated Energy

lack of statistics at high energy

test dataset (                      events) 

Gaussian fit w/ µ = 0.03, σ = 0.33 

KM3NeT PRELIMINARY
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Energy resolution
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LEARNING TASK 4.  
DIRECTION ESTIMATION (Z)
REGRESSION MODEL TO ESTIMATE Z-COMPONENT OF THE 
NEUTRINO DIRECTION
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Input tensor reshaped to : 

(T,Z): [n_samples, discrete_time_index, z_index]

Labels 

            : MC truth

Model architecture and Input Data

CNN model to analyse (T,Z) evolution and 
predict                    valuecos(𝜃𝑧)

cos(𝜃𝑧)
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Results

test dataset (                      events) 

Mean Squared Error (on test data) 0.03
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True vs NN Estimated direction (Z)        

KM3NeT PRELIMINARY

Muon neutrino event direction is 
better estimated  w.r.t. electron 

neutrino direction

KM3NeT 
PRELIMINARY

KM3NeT 
PRELIMINARY
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COMPARISON WITH THE 
OFFICIAL RECONSTRUCTION 
ALGORITHM
PERFORMANCES COMPARISON ON               EVENTS  
TO COMPARE RESULTS WITH STANDARD TRACK RECONSTRUCTION 
ALGORITHM, WHEN APPLICABLE

𝜈𝜇𝐶𝐶
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True vs  CNN Est. direction (Z)             
on the same             events

Estimated vs true 
Neutrino direction (Z)  

scatter plots

Direction estimation (Z)
True vs JGandalf Est. direction (Z) 
cuts: (-lik>60 && log(beta0)>-2.8) KM3NeT 

PRELIMINARY
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Comparison on Up-going/Down-going classification

• apply “labels” to reconstructed events: 
•                >0 : “up-going" 
•                <= 0 : “down-going” 

• Compare predictions 

Accuracy on up-going/down-going classification

0.9870.998

Official reco (JGandalf) 
(-lik>60 && log(beta0)>-2.8)

CNN regression running test  
on              events only 𝜈𝜇𝐶𝐶

Classification Accuracy Classification Accuracy

only          events (selecting well reconstructed events) with quality cuts𝜈𝜇𝐶𝐶
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Deep Learning  
Applications for KM3NeT-ORCA

Aim:  

    Multipurpose classification and regression studies in ORCA  

Task:  

Reconstruct energy and direction, track-shower composition, PID

• Developed a Deep Learning track-shower classifier called OrcaNet, based 
on Convolutional Neural Networks
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Deep Learning for ORCA with OrcaNet
• 6D information (XYZ, T, azimuth, zenith) 

projected to 4D subspace (neglect PMT 
direction)  

• Time binning: 60 bins (~10 ns/bin) 

•  Space binning: 11x13x18  

• 4 week training on HPC GPU Cluster 
(4xGTX 1080)  

XY view of a 𝜈𝜇CC event CNN model architecture
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Results

Track/shower event classification 
No reconstruction output used 

CNN outperforms RDF with  
human-selected features 
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Conclusions and outlook
• ML Results are promising in these first iterations: 

• ML provides stable estimations, comparable and in some cases better than official reco 

• ML does not depend on any reconstruction algorithm: independent event study directly from raw 
data 

• Room for improvement and a lot of work to do (detailed detector description, complete reconstruction, 
complete flavour identification) – More results coming soon! 

• KM3NeT expects to produce a DL toolset for CNN applications in ASTERICS (H2020)  - Possibly 
portable to other event-based experiments 

• KM3NeT INFN groups to contribute with ML algorithms in Task 3.4 of ESCAPE (proposal)   
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Thanks a lot for your 
kind attention

Thanks a lot for your 
kind attention

Chiara De Sio  
cdesio@unisa.it
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