Improving the muon track reconstruction of IceCube and IceCube-Gen2

Federica Bradascio and Thorsten Gluesenkamp for the IceCube Collaboration

VLVnT 2018, Dubna

The IceCube Neutrino Observatory

Astrophysical neutrinos observed and evidence for first source

Extending IceCube

Sensitivity to sources 5 times fainter

- IceCube and IceCube-Gen2 aim to identify sources of astrophysical neutrinos
- Good pointing accuracy is needed
- \blacktriangleright Muon tracks allow for point-source search with $\sim 1^\circ$ resolution
- Improve angular resolution to sub-degree range

Neutrino event signatures

Muon track reconstruction

1. Cherenkov light detected by PMTs

3. PDF of photon arrival time

2. Scattering in the ice causes delays

$$t_{\rm res} = t_{\rm hit} - t_{
m geo}$$

4. Maximum likelihood algorithm

$$\mathcal{L} = \prod_{i \in \text{DOM}} p(t_{\text{res}})$$

Track reconstruction methods

Are we reconstructing the truth?

Expectation

Continues Energy Losses

Reality

Stochastic Energy Losses

What is the best resolution we could achieve?

Use the same hypothesis of the reconstruction: photon arrival time distribution according to PDFs

How do we improve the angular resolution?

Better description of the arrival time distribution of photons

Current reconstruction:

- No photomultiplier related effects (e.g. prepulses, afterpulses)
- Continuous energy losses along the muon track

Improvements:

- Parametrization of photomultiplier related effects
- Parametrization of stochastic energy losses along the muon track

Which photomultiplier effects?

These are not the major limiting factors of the angular resolution

Federica Bradascio

Improving the muon track reconstruction of IceCube and IceCube-Gen2

What are stochastic energy losses?

- Cherenkov light is not the only contribution above 1 TeV
- Secondary contributions: bremsstrahlung radiation, pair production and nuclear interactions
- Cascades of different brightness randomly added along the muon track
- Slightly broader average PDF

How to include stochastic energy losses?

Combine track reco (SplineMPE) with stochastic energy losses reco (Millipede): SegmentedSplineMPE

- Reconstruction based on SplineMPE
- Hypotesis: cascade-segmented track
- Likelihood:
 - MPE likelihood:

$$\mathcal{L}_{\mathrm{MPE}} = \prod_{DOMs \ i} N \cdot p_1(t_{res,i}) (1 - P_1(t_{res,i}))^{(N-1)}$$

▶ $p_1(t_{res,i})$ and $P_1(t_{res,i})$ calculated for each cascade and weighted with their energy:

$$p_1(t_{res,i}) = \sum_{sources j} w_j p_{1,j}(t_{res,i})$$

SegmentedSplineMPE: two approaches

SegmentedSplineMPE results for IceCube

- Track Seed: SplineMPE
- **Cascades Seed:** UberMillipede (cascade length = 10 m)

SegmentedSplineMPE results for Gen2

- **Track Seed:** SplineMPE
- Cascades Seed: Millipede (cascade length = 10 m)

Horizontal vs Vertical Events

- Horizontal events: 90° < Zenith < 120°</p>
- Upgoing events: 130° < Zenith < 180°</p>
- Larger improvements for upgoing tracks

Horizontal Events

Upgoing Events

Which improvements for Gen2?

Improvements w.r.t. SplineMPE (standard track reconstruction)

15 years projection for horizontal events

	RECONSTRUCTION	5σ Discovery Flux	90% Upper Flux Limit
IceCube	SplineMPE	$0.575 \ \times 10^{-12} \cdot \mathrm{E}^2 \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$	$12.723 \times 10^{-12} \cdot E^2 \text{ cm}^{-2} \text{ s}^{-1}$
$\phi_{\rm IceCube}/\phi_{\rm Gen2}$	SplineMPE	3.54	1.25
$\phi_{\rm IceCube}/\phi_{\rm Gen2}$	SegmentedSplineMPE	3.69	1.30

- Current muon reconstruction assumes continuous energy loss along the muon track, and does not take into account PMT-related effects
- \blacktriangleright A correct description of the expected arrival time distribution of photons would increase the resolution by \sim 40% at 100 TeV and \sim 45% at 1 PeV
- PMT-related effects are not the major limiting factor of the angular resolution
- A new direction reconstruction has been developed that includes stochastic energy losses in the likelihood model
- Parameterization of stochastic energy losses improves the angular resolution by 10% at 100 TeV and 25% at 1 PeV

Backup slides

How to improve reconstruction at lower energies?

- Stochastic energy losses reconstruction can give a wrong description at low energies
- Muon track PDF considers only continuous energy losses and goes like ~ log E
- It can help to give a better description at lower energies
- For each DOM, the PDF is:

$$p(t_{res}) = rac{A \cdot p_{ ext{muon}}(t_{res}) + B \cdot p_{ ext{cascades}}(t_{res}) + C \cdot p_{ ext{noise}}}{A + B + C}$$

where A, B and C are amplitudes of each term

How to improve reconstruction at lower energies?

Federica Bradascio