Multimessenger Astrophysics with AMON: Current and Future Alerts

Jimmy DeLaunay for the AMON Team

PENNSTATE.

VLVnT 2018 Dubna

Outline

- What/Who is AMON
 - Astrophysical Multimessenger Observatory Network

• Current and Past Alert Campaigns

• Future Alerts

AMON searches for multimessenger transients using the messenger particles of all four fundamental forces

Triggering Observatories

- Provide sub-threshold candidate events to AMON in real time
- They have large FOV and high duty cycles

- Seeks coincidences in time and space
- Generates alerts, broadcasts, archives, and organizes
- Pass-through of above-threshold events (e.g. IceCube HESE)
- Dual High-Uptime Servers

Follow-up Observatories

- Receive and respond to AMON alerts
- Provide afterglow or delayed feedback on potential multimessenger transients

x-ray, UV, optical

<u>Triggering</u>: IceCube, ANTARES, Pierre Auger, HAWC, VERITAS, FACT, Swift BAT, Fermi LAT & GBM, LIGO-Virgo*

<u>Follow-up</u>: Swift XRT & UVOT, VERITAS, FACT,, HESS, MAGIC, MASTER, LCOGT * Ongoing MoU negotiations

MoU Highlights

- Each observatory retains full rights over use of its data
- No analyses are done without approval

MoU Template Found here: https://www.amon.psu.edu/j oin-amon/

Current public alerts consist of High-Energy Tracks from IceCube, EHE and HESE

 AGILE ANTARES FACT Fermi GBM 	 Fermi LAT IPN HAWC Konus-Wind H.E.S.S LCOGT INTEGRAL MAGIC 	MASTER Swift Maxi/GSC Pan-STARRS PTF	
Event/ Follow-up	ν	γ optical	γ high-energy
IC 171106A			
IC 171025			
IC 170922A		•••	
IC 170321A			
IC 170312A			
IC 161210			••••
IC 161103			
IC 160814A			
IC 160806A			
IC 160731A		19	=

6

The Swift Campaigns: follow-up observations

- Observation tiles centered on first IceCube alert (dashed line) HESE/EHE alerts.
- 1st campaign: observations revealed multiple x-ray sources that were previously identified
- No compelling candidate X-ray or UV/optical counterpart for any of the events. Set up flux upper-limits

The Swift Campaigns: IC170922A

- Tiles around IC170922A
 - Nine sources revealed in the field of view
- TXS 0506+056 or J0509+0541 is circled in Red
- Keivani et al. 2018: combined data from *Swift*, *NuSTAR*, and X-shooter data with *Fermi* observations. Lepton-hadronic model to explain emission.

(http://iopscience.iop.org/article/10.384⁵ 7/1538-4357/aad59a/meta)

 Expresses importance of full X-ray observations

Up-Coming Alerts

- Pass Through
 - Public IceCube Alerts
 - Simplified / Improved High-Energy Tracks
 - Private HAWC Alerts
 - GRB-like Transients
 - HAWC MoU members, possible Public Plans
- Gamma Nu

• Gamma - GW

Neutrinos

y-v Coincident Analyses - Approval Pending

Preparing for O3: γ - GW

- GRB/GW 170817A has given huge motivation for dimmer, prompt γ-rays
- O3 Scheduled for early 2019
 - Public Alerts from LVC
 - \circ FAR \lesssim 1 per month
 - Currently making proposals for an MoU to get sub-threshold alerts
- Real-Time alerts include:
 - 2D or 3D Probability Sky Maps
 - \circ FAR
 - EM Bright Probability

Proposing Coincident Searches with:

- Swift BAT
 - Sub-Threshold Image Blips
 - ~4" 90% containment
 - Latency ~ 1-8 hours
 - HAWC
 - Sub-Threshold GRBlike
 - TeV γ-rays should survive EBL for close by events (d<100Mpc)

https://dcc.ligo.org/public/0119/P1500071/007/index.html

Summary

- AMON has been up and running
 - Providing Pass-Through and helping to organize follow-ups
- New/Updated pass-through Alerts are coming
- *y*-*v* Coincident Analyses are in the works
- Preparing to make the most of O3

We're always looking for new AMON members, follow-up, triggering, analyses, or anything.

https://www.amon.psu.edu/join/

Backup Slides

LIGO-Virgo/Swift-BAT. We have proposed an defined an analysis with sub threshold data.

BNS Mergers	Data	Low Latency CBC Detection Pipelines •Like GSTLAL •FAR, Mass Estimates or NS probability BAYESTAR Skymaps •2D or 3D sky map localizations	Coded Mask Imager •Sub-threshold Image Peaks •Few arcmin localization •Exposure from milliseconds-minutes •15-150 KeV
	Background	Detector noise Non-astrophysical transients; •Trucks driving by, etc.	Detector Noise Fluctuations

Current plan 1: IC-HAWC analysis has been defined and it is under review. Tested on 1 month of data from both observatories (scrambled). Alerts will be sent for specified thresholds that produce a specific FAR.

16

$$\chi^2_{6+2n_{
u}} = -2\ln[p_{\lambda} p_{_{HWC}} p_{_{cluster}} \prod_{i}^{n_{
u}} p_{i_{IC}}]$$

 $\chi^{2\prime} = -\log p_{\chi^2_{6+2n_{
u}}}$

FACT

25

AMON Alerts

- Structured in XML format with simple schema
- Easily interpreted by software, to be read by robotic telescopes
- Already used by much of the astronomical community
- Sent out to AMON partners through AMON-GCN connection
 - Very fast delivery
 - Some day in the future, will be sent out publicly
- Content of AMON Alert
 - What
 - id number, stream number, revision number
 - False alarm rate, number of events, duration of events in alert
 - WhereWhen
 - Time, position of best fit, positional error

