IceCube results on magnetic monopoles

Christian Spiering Dubna, VLVNT 2018 Using material of Anna Pollmann

Basics

- elemental magnetic charge (Dirac) g_D = 68.5 e
- Ionisation: ~4700 of that of a bare muon
- Cherenkov light: ~8300 of that of a bare muon

- With huge mass created
 - shortly after the Big Bang (GUT) $10^{13} \text{ GeV} \leq M_{MM} \leq 10^{19} \text{ GeV}$
 - in intermediate stages of symmetry breaking (IMM) $10^7 \text{ GeV} \leq M_{\text{MM}} \leq 10^{13} \text{ GeV}$
- Acceleration in magnetic fields for $M_{MM} \leq 10^{14} \text{ GeV}$: up to $E_{kin} \sim 10^{15} \text{ GeV}$
- Trapping in Galaxy, around Sun, Earth for v ~ 10⁻⁵ -- 10⁻² c

Monopole light yield

New results on GUT monopoles

Reconstructed monopole track

New results on GUT monopoles

New results on GUT monopoles

Erratum in preparation: IceCube limits shift factor 9 to the left, previously the contribution of oxygen to cross section was neglected

Event signature of highly relativistic monopoles

 μ -neutrino 2.6 ± 0.3 PeV

μ-bundle from cosmic rays

Simulation of a monopole with 0.99 *c*

- High energy deposition
- <u>Smooth</u> energy deposition along the track (different to h.e. neutrinos)

Event signature of mildly relativistic monopoles

- High energy deposition
- <u>Smooth</u> energy deposition along the track (different to h.e. neutrinos)
- <u>Lower</u> velocity

Results for mildly relativistic monopoles, 1 year of data

Limits on non relativistic magnetic monopoles

... but there is a gap:

Luminescence light measurement

Light yield depends on:

- temperature
- impurities / solubles
- radiation type
- Pressure

Measurement with ²⁴¹Am α -source, E(α) = 5.486 MeV (4.4 \pm 0.4) after passing of gold foil coverage

arxiv:1710.01197

Luminescence light measurement

Light yield depends on:

- temperature
- impurities / solubles
- radiation type
- Pressure

Measurement with ²⁴¹Am α -source, E(α) = 5.486 MeV (4.4 \pm 0.4) after passing of gold foil coverage arxiv:1710.01197

Monopole detection via luminescence

- IceCube's large volume provides best sensitivities to intermediate / high mass magnetic monopoles
- non-relativisitic searches 10^{13} GeV $\leq M_{MM} \leq 10^{19}$ GeV
- **relativistic searches 10^8 \text{ GeV} \leq M_{MM} \leq 10^{14} \text{ GeV}**
- ongoing analyses at all channels
- unblinding (results) expected soon