Baikal-GVD: status and plans

VLVNT-2018

Vladimir Aynutdinov, INR RAS, on behalf of the Baikal collaboration

Baikal GVD

baikalweb.jinr.ru

9 institutes ~70 scientists

Irkutsk U

St-Petersburg Marin Tech. U

EvoLogics GmbH Berlin N-Novgorod Tech. U

MSU

Prague Cz Tech U Bratislava CU

INR

JINR

Baikal-GVD project

- 1370 m maximum depth
- Distance to shore ~4 km
- Absence of high luminosity bursts from biology and K⁴⁰ background
- Water properties: Abs. length: 22 ± 2 m Scatt. length: ~ 30-50 m

N 51,76°

E 104,41°

Possibility to deploy the detector from the ice of the lake Basic approach in GVD construction: * Flexible structure allowing an expand, upgrade and rearrange of the detection system. * Simplicity of the basic detector elements.

3D array, 10⁴ photodetectors D2012 GINE **Eff. volume** ~1.5 км³ Google earth

48-0 456355-55 x R 5735282-13 x C REPORTS Han UNDEREM MODE: 812 x

Высота намельных узовнем моля: 5.80 к

SIGNAMEN & 10 2012

Baikal-GVD phase 1: GVD-1 (2020-2021)

String: 3 Sections×12 OMs&ADC module

GVD-1				
OMs	2304			
Clusters (8 Strings)	8			
Depths, m	750 – 1275			
Eff. Volume	0.4 km ³			

Directional resolution	Energy resolution
Cascades: 3.5° – 5.5°	δ(E/Esh) ~ 0.15
Muons: 0.25° - 0.5°	δ(lgE) ~ 0.4

Production of GVD-1 components

OM assembling and tests: JINR

Electronics production: SNIIP factory, Moscow

Tests OM electronics: INR RAS

DAQ modules

Optical modules

Electronics production: MSU

Assembling and tests: INR RAS

Cables

Production: PskovGeocabel factory

Assembling and tests: Irkutsk group.

JINR FACILITIES FOR THE OPTICAL MODULES PRODUCTION

See talk A. Doroshenko

Now we have 450 OMs ready to use: ~1.5 clusters

Equipment allows to assemble and test up to 12 OMs per day

INR TEST FACILITIES FOR THE DAQ ELECTRONICS

Facility is designed for long-term tests of all cluster components with full power load.

String electronics:
3 Section modules and String module (36 ADC channels).

6 strings (216 ADC channels) is under testing now

- Signals on the ADC are simulated by generators with an adjustable frequency.
- Software for data acquisition is the same as for real telescope.

Stages of deployment of the GVD-1

Configuration	2015	2016	2017	2018
The number of OMs	192	288	576	864
Geometric sizes, m	Ø80×345	Ø120×525	2ר120×525	3ר120×525
Eff. Vol	0.03 km ³	0.05 km ³	0.1 km ³	0.15 km ³

Status-2018 of Baikal-GVD

Data transmission

- 40 Gb per cluster per day to shore
- 5 Mb/s 40 km radio channel to Baikalsk

Performance of acoustic positioning system

See talk A Avrorin

Detector response

See talk Zh-A. Dzhilkibaev

Directional resolution of cascades in water: 3° - 5°

Cascade selection:

- Causality cuts (noise rejection);
- Reconstruction of cascade position direction and energy and cuts on quality parameters;
- $N_{hit} > 20$

Expected number of events in GVD Cluster from astrophysical neutrinos for 1 yr.

expected for 1 GVD cluster

Cascade analysis – 2016 The first GVD cluster *PRELIMINARY*

Life time - 182 days (2016) 6.9×10^8 accumulated events Downward going cascade 53 hits E=157 TeV, $\theta = 57^{\circ}$, $\phi = 249^{\circ}$

RA=173.4° Dec=13.9 ° Equatorial coordinates

Distribution of events on multiplicity of the triggered channels (N_{hit}) in comparison with background from μ_{atm}

Preliminary muon neutrino flux results

Muon track reconstruction software is implemented

BDT discriminant to reject atmospheric muon background

Three datasets (15, 32, 50 live days) with different data quality and BDT selections:

- Flux results agree with each other within the statistical error
- Conservative flux estimate:

1 neutrino per ~3 days

run 241, event 104612 θ_{rec} = 35.5 deg. BDT=0.40

This work in progress now Procedures to certify good data are being developed

Search for neutrinos in coincidence with GW

GW: 17.08.2017, (Advanced LIGO & Advanced VIRGO) GRB170817A - 1.7 s delay (Fermi-GBM and INTEGRAL)

Cascade mode: search for events in two time-windows GW \pm 500 sec (prompt emission): zenith angle $\theta = 93^{\circ}$ GW +14 days (delayed emission); 74° < θ < 150°

Upper limits on fluence of neutrinos associated with GW

Assuming E⁻² spectral behavior and equal fluence in all flavors upper limits at 90% c.l. have been derived on the neutrino fluence.

GVD plans

Timeline GVD 1

Year	2016	2017	2018	2019	2020	2021
Nb. of	1	2	3	5	7	9
clusters	288	576	864	1440	2016	2592
Nb. of OMs						

Main tasks 2019

- Two clusters deployment
- Reliability increasing.

- Additional facilities for long-term tests of electronics are foreseen.
- Created a conditions for the laying of two shore cables during the season.
- The increasing of manpower during the expedition to Baikal is foreseen.

Completion of equipment preparation for two clusters is planned for December 2018.

Summary

- Three GVD clusters (864 OMs) is under operation now.
- Experimental data obtained in period 2015 2017 were used to search for neutrino events of astrophysical nature.
- Two clusters are expected to be deployed next year.
- Completion of the GVD-1 is expected in 2020-2021.

Thank you for your attention

