D-Egg

The next-gen optical module for the deep in-ice neutrino detector

Yuya Makino for the IceCube-Gen2 Collaboration

VLVnT 2018 @ Dubna, Russia

CHIBA UNIVERSITY

IceCube Upgrade

Prove new OM technologies

Next-Gen Optical Module?

IceCube DOM

- 1 x 10" PMT in the pressure glass vessel (optical gel
- Waveform measurement (300MSPS at max.)
- Module diameter: 33 cm
- Works very well over a decade

Next-Gen Optical Module?

Only 1 PMT seeing downward?

Modest UV

transparencies...

IceCube DOM

Changes on the read-out system

IceCube DOM Main board

- 1 PMT
- Multiple ADC channels / PMT
 - Fast ADCs (10-bit, 427 ns time window, 300 MSPS, 3 diff. gains)
 - Slow ADC(10-bit, 6.4 us time window, 40 MSPS)
- Needs tigger to start waveform read-out
 -> delay board is required

D-Egg Main board

- 2 PMTs
- Single ADC channel / PMT
 - ▶ 14-bit, 250 MSPS
 - Waveform length: Firmware adjustable
- Possibly pulse extraction inside FPGA
- Continuous digitizing (Zero dead-time)

=> R&D ongoing. Final version by Apr. 2019

Current Status

- Chiba Group is responsible for 300 D-Eggs
 - Production by Sep. 2021
- To be deployed in 2022/23

- Pressure vessel + Sensors + Analogue circuit are mostly final model
- Currently testing with 14 prototype halfmodules (Rev.3)

This talk: Verify the improved capability of Cherenkov photon detection compared to DOM using the prototype modules

Better Glass For More Photons

Thickness 10 mm @ bottom (DOM glass : 12.7 mm)

- Developed with Okamoto Glass
- Reduced Fe content for UV-transparency (<0.008 % by weight)
- Shows significantly improved transmittance at UV region
 - 75% (D-Egg glass) and 10% (DOM glass) @ 320 nm

Optical-Coupling Gel

- Developed by Shin-Etsu
- Thickness optimized to 5 mm at the bottom
- 95% of transparency at 320 nm

D-Egg v.s. IceCube DOM

Significant improvement of the sensitivity at the UV region is expected

D-Egg Detection Efficiency (λ dep.)

- Multi-λ detection efficiency measurement @ Chiba
 - λ=315, 340, 365, 405, 420, 520, and 572nm
- Major systematics comes from (Reflection/Transmission) ratio at the beam splitter
 - Currently 5% is assigned as a systematic error

D-Egg Detection Efficiency (λ dep.)

Confirmed high detection efficiency of D-Egg at UV region

Confirmed high UV-transparency of glass+gel & high-QE of 8" PMTs
 Ave. 26.6% at 340nm

D-Egg Detection Efficiency (angular dep.)

Test bench for 8" PMT / D-Egg cathode uniformity measurement

- Fast laser (pulse width < 1ns, λ =400 nm)
- ▶ Sampling pitch : zenith 1°& azimuth 5° => ~5000 points over the cathode
- ▶ 1 half D-Egg / day

D-Egg Detection Efficiency (angular dep.)

- High efficiency up to 50 degree
- Confirmed uniform responses, but also a local minimum
 - Due to the dynode structure of the 8" PMT (varied largely depending on PMTs)

Effective Area Calculation

Effective area calculation based on the measured PMT responses

Horizontal direction is NOT blind angle for D-Egg (60% of vertical sens.)

• Expected sensitivity of D-Egg is twice as that of IceCube DOM

D-Egg is a slim OM, but has two high-QE PMTs and UV-transparent glass & gel

Beyond Dual-PMT System

Lots of spaces available on the sides... -> Put more detectors!

WLS Fibers in D-Egg

More sensitivity for the horizontal direction?

- Wavelength Shifting (WLS) fiber detector can improve the sensitivity from the horizontal direction
- Start discussion with Kuraray
- Mainly aims Gen2, but possibly install some prototypes in Upgrade

- D-Egg as a next-gen optical module for the deep in-ice neutrino detector
- IceCube Chiba Group will produce 300 D-Eggs by Sept. 2021
- Performance studies using multiple prototype D-Egg modules verified:
 - ▶ Detection efficiency at 340 nm is 26.6%
 - Geant4 based simulation indicates that the sensitivity of D-Egg is 2 x IceCube DOM
- Mass production will start from Oct. 2019
- R&D of optional sensors for D-Egg is on going for further sensitivity

Backup

Schedule

Noise Sources in D-Egg...

8" PMT

- Dark rates get at low temperature (-20°C -40°C)
- Need to accept high dark rate due to high QE

Glass

- Very important at low temperature
- ⁴⁰K contamination in a glass is know to a noise source
- Developed ⁴⁰K-reduced glass sphere
 - 0.0163 % by weight (0.03% for IceCube)
 - ▶ 4 Bq/Kg (beta), 0.7 Bq/Kg (gamma)
- Glass is UV-transparent for noises too!

Dark Rates At Low Temperature

Correlated component (dt < ms) is important at low temperature

Time interval distribution follows the IceCube model

Obtained dark rates of D-Egg: 800–1200 Hz @ -40°C, 2.45 us dead-time

- Contribution from PMT : 450Hz (with small fluctuation)
- Same level as IceCube DOM's by the laboratory measurements

Continue glass studies to reduce dark rates for the Gen2 array

LED Flasher in D-Egg

D-Egg stores a LED Flasher ring surrounding the bottom PMT

- ▶ 4 x downward (3-colored) LEDs & 8 x horizontal LEDs
- LEDs will be optically coupled to gel & glass

Simulation studies are ongoing to optimize LED Flasher specs

Schematics

Bare 10" PMT Uniformity

TA1552 with a IceCube HV base (1.6 kV)

Slicing along the dynode structure

Sensitivity at the local minimum is mostly half compared to the center region (FINEMET option)

All measured uniformity maps

SPE distribution & Zenith angle dependence

-> Next slide : Gain v.s. Peak to valley ratio

Quantum Efficiency & Spectral Response

- Multi-λ QE measurement @ Chiba λ=315, 340, 365, 405, 420, 520, and 572nm
- Systematics under investigation

Pre-pulse & Late-pulse

Late-pulse Main pulse pre-pulse С $^{-1}$ Amplitude [V] -2 -450 100 150 200 250 300 0 Time [ns] -12.5ns -30ns 35ns

- Observed pre-pulse ratio is 0.75 %
- Observed late-pulse ratio is 5 %
- PMT dependences look small

After-pulse

0.3 us \leftarrow After pulse region \rightarrow 9.3 us Charge ratio of after-pulse to main pulse Afterpulse NPE / Ideal Main-pulse NPE 0.175 0.125 0.100 0.075 0.025 sq0259 0.0 sq0260 -2.5 Hunde [m√] -7.5 -10.0 -12.5 -5.0 -15.0• -17.5 Main pulse peak : -4V Obs. 0.000 10^{3} 10^{4} -20.0 8 0 2 6 10 4 Ideal Main-pulse NPE [p.e] Time [us]

- Clear after-pulse peaks in us-scale after the main pulse
- Observed after-pulse ratio is 2.5 %

Chiba data