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a b s t r a c t

The suggested FUMILI package development has the following advantages: a more convenient and
friendly user interface; no limit on the number of parameters and experimental points; speed advantage
when the number of parameters is high enough; there are options to ignore wrong experimental points
and correct experimental errors. The preliminary scan is envisaged for complicated tasks.

All programs are written in FORTRAN-77.
The investigation has been performed at the Veksler and Baldin Laboratory of High Energy Physics,

JINR.

Program summary

Program title: FUMILIM
Catalogue identifier: AEQF_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEQF_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 17291
No. of bytes in distributed program, including test data, etc.: 346409
Distribution format: tar.gz
Programming language: Fortran-77.
Computer: Any computer with a Fortran 77 compiler.
Operating system: Any system capable of running Fortran 77 executables.
RAM: 500000 bytes
Classification: 4.9.
Nature of problem:
To minimize X2-functional.
Solution method:
Conjugate gradient method.
Running time:
From milliseconds to hours. The test runs provided only take seconds to complete.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This work has been done in the memory of outstanding math-
ematician Prof. I.N. Silin. His famous program FUMILI [1–4] (FI)
was the first one in the early sixties to provide a very advanced
minimization method which gave physicists an effective tool
to interpret experimental data. The so-called conjugate gradient

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
∗ Tel.: +7 49621 21282.
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method [5] was used in the program to find the functional min-
imum. The key algorithm of the error matrix transformation was
several times improved by him. The last changes were done in
2002. On the other hand, the user interface, whichwas fixed in six-
ties as a beta version, was kept unchanged. The new user interface,
suggested in this paper, had been previously in part discussed by
the author with I.N. Silin, who supported it. Themain events in this
field are highlighted in Section 2.

The new features of the package, called FUMILIM (FM), are
described in Section 3. The greatest attention in this workwas paid
to the problem, related to a wide class of tasks, when the number
of parameters essentially exceeds 100, which is declared as the
maximum for FI. The acceleration algorithm was elaborated for
such tasks.

0010-4655/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
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Also the intelligent procedure of fitting data ignoringwrong ex-
perimental points and the experimental error correction is consid-
ered in this section. The preliminary scan procedure is suggested
for ambiguous tasks.

The beta versions of this package were described in [6].

2. User’s interface

2.1. User’s function

The program searches for the minimum of the functional
n

i=1

χ2
i , (1)

where n is a number of experimental points,

χi =
F(xi, a, F ′

a) − Yi

σi
. (2)

Here Yi and σi are the experimental value and error, respectively.
F(x, a, F ′

a) is the user’s function (UF), where xi is the argument
array, a is the adjusted parameter array and F ′

a is the array of partial
analytical derivatives, which can be defined in UF. Yi, σi, xi are the
data of the experimental point.

By default, the following structure of the experimental point is
implicit:

Yi, σi, xi(1)[, xi(2) . . .]. (3)

The x-array is transmitted to UF. Sometimes it is more convenient,
when the user completely defines the data structure of the
experimental point. If this option is ordered, all the array of
experimental point data is transmitted to UF and the value of χi
(Eq. (2)) must be formed within UF.

Now UF should be referred in the program call. That makes,
in particular, the use of several fits with different UF in one task
easier. In each UF an arbitrary number of partial derivatives with
respect to the parameters may be defined analytically, that is
difficult while using FI.

2.2. Parameter step restriction

To fit bymeans of FI, the user should define the parameter step
restriction pl, that is the maximum allowed parameter increment
during one iteration. Sometimes this is not an easy task. If the
functional F is strictly linear in all parameters, pl can be arbitrarily
large. Too small pl leads to an excessive number of iterations. If F
is non-linear in some parameters, and pl is sufficiently large, the fit
can go in the wrong direction.

In FM there is an opportunity not to define these values. The ad-
justing of the parameter step restriction is based on the compar-
ison of the first and second averaged functional derivatives with
respect to the parameters. The first partial derivatives, if they are
not defined in UF, are calculated in the program by the following
formula:

F ′

aj =
∂F
∂aj

=
F [. . . (aj + sj), aj+1 . . .] − F [. . . aj, aj+1 . . .]

sj

=
δj

sj
, (4)

where j, aj and sj are parameter number, value and augment, re-
spectively. pl is related to s as pl = 100s (as in FI). A more accu-
rate relation between δ and derivatives can bewritten by using the
Taylor expansion:

δ = F ′s +
1
2
F ′′s2 + · · · . (5)

To find the both derivatives, two calls of UF with different values
of s are necessary. In FM s1 = s and s2 = 2s are used. In this case
we have

F ′
=

4δs − δ2s

2s
, F ′′

=
δ2s − 2δs

s2
. (6)

In the case when F ′ is defined by the user, we have

F ′′
=

2(δs − F ′s)
s2

. (7)

Assuming that the second term in Eq. (5) should contribute to
the value of δ less than 0.5%, we have the following equation for
the optimal value of s:

s′ =
0.01⟨F ′

⟩

⟨F ′′⟩
, (8)

where ⟨F ′
⟩, ⟨F ′′

⟩ are the averaged values of derivatives over all
experimental points. The start value of s is defined from the start
values or bounds of initial parameters. If nothing is defined, s =

0.01.
As a rule, FM finds the optimal start values of pl better than the

user.
The time necessary for this operation is equal approximately

to the time of one regular iteration. In the case of a multiple call
to FM (during event reconstruction, for example) this time loss
becomes negligible, because the found values of pl are saved to the
initial data array during the first call.

2.3. Output

FM starts with the verification of the initial conditions of the
task. User error at the start of the task with a fit is a typical phe-
nomenon. This diagnostics helps to save timewhendebugging. As a
part of the verification, the brief analysis of the experimental point
array is fulfilled. It is accepted that an experimental error should
have a value within (10−12, 1012).

Apart from the standard output (like in FI), whose example is
shown in Fig. 1, there is an opportunity to record a number of files
to clear up the situation with the ambiguous fit or to provide the
data convenient for graphic representation. The example of using
the function table, describing the data, is shown in Fig. 2.

All possibilities for the extra output are listed in the user guide.

2.4. Main difference with FUMILI

The basic code of FI(the error matrix transform) was kept
unchanged.

FI calculates the correlation coefficient of the j-th parameter
with all the others. If it is not correlated with any other parame-
ter, the correlation coefficient Rj = 1. Large values of Rj mean that
there is no unique solution for the (UF). As a rule, the main con-
tribution to Rj ≫ 1 is provided by one of the pair correlations, rij.
Whenwe have a number of Rj ≫ 1, the task to isolate the pairs be-
comes very unclear.FM calculates only pair correlations, the largest
of them at the given j are placed into column ‘‘correlation
coef’’., together with the parameter number i, which is respon-
sible for this correlation.

The pair correlation is calculated by the following formula:

rij =
Mij
MiiMjj

,

where ∥M∥—an error matrix. rij satisfies Bunyakowsky’s inequal-
ity:
−1 ≤ rij ≤ 1.
At the absence of correlations rij = 0. Lines with |rij| > 0.9 are
marked, as it is seen in Fig. 1. There is an opportunity to see all pair
correlations, described in the user guide.
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Fig. 1. The example of screen (or OUT-file) output.

Fig. 2. Polynomial fit of data [7] with the calculation of the confidence band.

3. New features

3.1. Speed optimization

3.1.1. Problems with a large number of parameters
There is a wide range of tasks with a huge number of parame-

ters, when experimental data are subdivided into a large number
of sets, having a number of common parameters for the task (N0)
and also individual parameters for each set (N1). Thus, we have

NT = N0 + N1Ns, (9)

where NT is the total number of parameters, and Ns is the number
of sets. When a user faces the problem of adjusting big experimen-
tal setup offsets, such (or more complicated) a combination arises
frequently with Ns large enough. In the task of adjusting straw off-
sets [8] the total number of parameters and experimental points
achieved two hundreds and about 100 thousands, respectively.

Another example of a multi-set task is a study of the planet
magnetic field with different satellites [9]. In perspective, several
hundred sets of data, each about 500 experimental points, are
expected for several planets.

The most time-consuming part of the program is accumulation
of the error matrix [10]. The relevant sub-program has a cycle over
all events. If the derivatives are not defined in UF, then NT +1 calls
to UF are necessary for each experimental point. The first call is
with the current settings, and then we need to make Nt calls with
the parameter augments to find the partial derivativeswith respect
to the parameters. When Ns is large, the overwhelming majority
of calls produces F ′

aj = 0. Each of these calls requires the same
amount of time, as an effective call. To improve the efficiency in
this segment of the program, FM performs a preliminary iteration,
which analyzes the last arguments in the array of experimental
points. If the user defines them as a set number, the program ad-
justs itself tomake only (N0+N1+1) UF calls at each experimental
point. This approach provides the following speed-up:

R =
N0 + N1 + 1

NT + 1
.

The comparison of FI and FM speed for the tasks of this class is
illustrated in Fig. 3. In this example N0,N1 are the same for all
the sets and the enlargement of the total number of parameters
is achieved by increasing Ns. The polynomial UF was used in this
comparison. When UF is time consuming, the ratio has the depen-
dence as for 500 events/set with the polynomial.

The solution time of the task [8] is about 20 s with the single 2.8
GHz processor.

If the set contains subsets, it is offered to construct the last
argument of an experimental point as follows:

M = (I − 1)K + J,

where I—the set number, J—the subset number, and K must not be
less than Jmax.
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Fig. 3. Speed comparison for FI and FM using polynomial UF.

Fig. 4. Right/wrong point selection in linear and logarithmic scales for the task of
adjusting of straw offsets [8]. This figure is prepared by using FM service.

3.1.2. Event reconstruction
When FM is involved into the event reconstruction, themultiple

call with the option ‘‘no print’’ is usually applied. When this option
is ordered, the program analyzes initial conditions of the task
during the first call. If they satisfy certain conditions (see the
user guide), the program starting from the second call transits
to the optimized for the speed algorithm (no verification of the
initial conditions, no adjustment, etc.). It is assumed that the
same array of initial parameter values is referred in each call.
The extra optimization is applied for two-parameter tasks (track
reconstruction).

In the latter case (depending on whether the derivatives are
defined or not by the user) the speed advantage in comparisonwith
FI is about a factor of 3–6. The solution timewithmentioned above
processor is 300 ·103 (defined derivatives) and 150 ·103 tracks per
second for the polynomial UF.

3.2. Fit ignoring wrong points

It is widely spread to use a double fit procedure, when the
second fit is fulfilled after removing thewrong experimental points
in a manual mode. When adjusting physical detector offsets, one
deals with a huge number of events, and wrong points form
statistically meaningful tail of the χ2-distribution (Eq. (2)), as it is
seen in Fig. 4.

Frequently, the second fit gives the parameter values, which
differ meaningfully from those in the previous fit, and they are

Fig. 5. Differences between experimental and fitted values of thermocouple
calibration for standard and IWP fits. This figure is prepared by using FM service.

more correct. FM allows one to fulfill the fit ignoring wrong points
(IWP) by using one call. After the standard fit as the first step, we
know χ2

0 = χ2/n, where n is the number of experimental points.
In subsequent fits the experimental points with χ2

i > χ2
m, where

χ2
m = Cχ2

0 , (10)

are ignored. The default value C = 15 can be redefined by the user.
It is seen from Fig. 5 that the IWP fit in comparison with

standard one gives the much better agreement between regular
experimental points and theory in vicinity of the ambiguous points.

While removing the wrong points in the manual mode in the
thermocouple task is possible (6 out of 272 wrong points), this
approach is hardly realistic for the straw task (7 · 102/6 · 104).

In the standard fit the convergence condition (as in FI),

κ = max


|daj|
δ(aj)


j=1,Nt

< ε, (11)

is a signal to finish the job. Here ε = 0.01, daj, δ(aj) are the
parameter increment and confidence band, obtained in the current
iteration. This condition is checked at the end of each iteration.

In the considered mode the condition to finish the job is

κ < ε ∧
χ2
s

χ2
< 1.05, (12)

where χs is the value of χ at the start of the iteration cycle. The
condition (11) now is only a signal to redefine (always to reduce)
χm by using Eq. (10). Thus, a sequence of iteration cycles with de-
creasing values ofχ2

m may occur. For example, in the thermocouple
task during the first iteration cycle only three worst points were
ignored. These points are easily distinguishable in Fig. 5. The other
three points were ignored during the next two iteration cycles.

In such tasks, as a polynomial fit, the pointswith extreme values
of the argument are at the increased risk to be interpreted as
wrong. The user can forbid ignoring of these points.

3.3. Unequal accuracy measurements

When one deals with several sets of measurements of the
same observable, he/she can face with the unequal accuracy of
different sets of data. An example of such a situation took place
while measuring the Mercury magnetic field by means of different
satellites [9]. Theχ2-dispersion for 15 sets of these data before and
after error alignment is shown in Fig. 6.



Author's personal copy

I.M. Sitnik / Computer Physics Communications 185 (2014) 599–603 603

Fig. 6. χ2
0 values for different sets of data [9] before and after the error-correction

procedure.

The solution of this problem is as follows. After the standard fit
as the first step, the averaged values of χ2 for i-th set, χ2

0,i become
known. During the second fit each experimental point, belonging
to the i-th set, is taken into account with the weight of χ2

0,m/χ2
0,i,

where χ2
0,m is the least of χ2

0,i.
The joint IWP and error alignment fit were applied in this task.

The difference between the standard and advanced modes of the
fit achieved 30% for some parameter values.

3.4. Preliminary scan

When F has a number of local minima and the initial parameter
values are not evident, scanning to find a preliminary global
minimum is envisaged. This procedure needs the timeproportional
to mkn, where m is a number of scanned parameters, k is a
number of values for each scanned parameter, and n is a number
of experimental points.

To speed up this very time-consuming procedure, the following
steps are provided. The first of them is the restriction of the number
of used experimental points: nu ≪ n. In this case the taken
experimental points are distributed evenly in the experimental
data array with interval n/nu. nu = 100 per set is the default value,
which can be redefined by the user.

Also, the prospect of the current combination of parameter
values is evaluated using only several experimental points (nfew =

0.1nu). The set of the parameter values is treated as unpromising
when χ2

0,few > 9χ2
0,u. Here χ2

0,u is the minimum value, achieved
at the moment. For the start value of χ2

u the combination with
the central values of all scanned parameters is used. This approach
allows one to speed up the scan procedure by about 10 times.

The scanned parameters are regularized in the descending
order along gradient values:

Gj =

n
i=1

F ′
aj

σi
χi, (13)

where j is the parameter number. Other denotations are defined
in Eqs. (1), (2). The parameter with the highest gradient value is
scanned first.

When the number of candidates to scan (defined in the user
guide) is too large to solve the task for a reasonable time, there is
an opportunity to restrict the number of the scanned parameters.
In this case the parameters with the lowest gradient values will
be excluded from scanning. The small gradient value means that
the parameter value is close to optimal or F (Eq. (2)) has a weak
dependence on this parameter.

By default, 3 values for each parameter are scanned. 5 loops
are envisaged. After each loop the interval of parameter values is
shrunk. This mode has the speed advantage in comparison with
more scanning values for each parameter, but ambiguous solution
is possible, when a strong correlation between parameters takes
place. The number of scanning values for each parameter and the
number of iteration loops can be redefined by the user.

The preliminary scan proved to be necessary in the task [9].

4. Summary

There is a wide class of many parameter time-consuming tasks
which the suggested package solves much faster in comparison
with existing minimization packages. The package has also a dis-
tinct speed advantage in tasks typical for the event reconstruction.

The set of options allows one to use one call instead of com-
plicated many-step procedures with removing the ambiguous ex-
perimental points and error alignment for different sets of data,
necessary when the standard call to the minimization program is
used.

The scanning procedure incorporated into the package makes
it possible to extend the class of solvable tasks in comparison with
the FUMILI package.

The modern user interface is elaborated for this package.
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