Neutrinoless double beta decay searches of ⁷⁶Ge at LNGS

LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Bernhard Schwingenheuer JINR Dubna, 22 Oct 2018

Topics in ν physics

- mixing parameters: matrix U, Δm^2 , neutrino mass hierarchy, CP violating phase \rightarrow DUNE/SURF, JUNO, NOVA, Hyper-K, T2K, ORCA, ...

- absolute neutrino mass scale
 - \rightarrow Katrin, Echo, Holmes, Project 8, ...
- sterile neutrinos: heavy right-handed v without coupling to W/Z bosons, only mixing \rightarrow DANSS, NEOS, Stereo, SoLid, MiniBoone, ...
- $v = \overline{v}$: Lepton number violation, neutrinoless double beta decay (A,Z) → (A,Z+2) + 2e⁻ → Kamland-Zen ¹³⁶Xe, EXO-200 ¹³⁶Xe, Cuore ¹³⁰Te, SNO+ ¹³⁰Te, SuperNEMO ⁸²Se, ...

GERDA & Majorana & LEGEND (& CDEX) ⁷⁶Ge

half-life $0\nu\beta\beta > 10^{26}$ yr \rightarrow for a discovery need many moles of isotope and low background

Signal and Sensitivity

"background-free": $N^{bkg} < 1$ within 1xFWHM @ Q_{BB} at design exposure M t

Background reduction for $0\nu\beta\beta$

background sources: α , β decays with/without γ , muons, neutrons, $2\nu\beta\beta$, ... intrinsic to detector or external

- 1) good energy resolution
- 2) underground laboratory like Baksan or Gran Sasso
- 3) shielding with "clean" material: best are liquids like liq. scintillator, liquid argon, water
- 4) measure all energy depositions of background events
- 5) location and number of interactions/energy depositions
- 6) identify chemically the daughter nucleus (e.g. Ba tagging for Xe decay daughter)
- GERDA & LEGEND apply all (but one) measures:
 - 1) Ge detectors have currently best energy resolution of all experiments
 - & "no" intrinsic U/Th contamination (Astroparticle Phys 91 (2017) 15-21)
 - 3) shielding by argon and water
 - 4) read out scintillation light of argon & small mass of 'inactive' material
 - 5) time profile of Ge detector signal → number & location of interactions

GERDA @ LNGS

Phase I (2011-13):

Phase II:

2x Ge mass (30 BEGe det.)

LAr scint. light readout

started end 2015

EPJ C73 (2013) 2330 and Eur. Phys. J. C78 (2018) 388

Liquid argon veto

Liquid argon veto (2)

pulse height spectra for PMT and SiPM versus time (and projection)

cut threshold at ~0.4 p.e. and withing 6 μs around Ge trigger random coincidence with Ge \rightarrow ~2.3% of events rejected

Time profile Ge signal

Pulse shape discrimination

BEGe = Ge drift detector: signal = sum of individual drifts

→ max current A / energy E for multi site events reduced compared to single site A/E powerful discrimination variable

BEGe physics data

 $0\nu\beta\beta$ proxies = $2\nu\beta\beta$ & Double Escape Peak of 2615 keV γ ($\gamma + A \rightarrow e^+ e^-$ with 2x511 keV escape)

all α (surface) events removed, γ lines suppressed by factor ~6

Final energy spectrum (until April 18)

no signal, background ~0.6 cts/(keV t yr), FWHM ~ 3.0 / 3.6 keV for BEGe/coax detectors

Results (data until April 2018)

	• /- /-					
Dataset	Exposure	Energy resolution	Efficiency	BI	Ν	
	(kg·yr)	FWHM (keV)		10^{-3} cts/(keV·kg·yr)		
PhaseI-Golden	17.9	4.3(1)	0.57(3)	11 ± 2	46	
PhaseI-Silver	1.3	4.3(1)	0.57(3)	30 ± 10	10	
PhaseI-BEGe	2.4	2.7(2)	0.66(2)	5^{+4}_{-3}	3	
PhaseI-Extra	1.9	4.2(2)	0.58(4)	5^{+4}_{-3}	2	
PhaseII-Coax1	5.0	3.6(1)	0.52(4)	$3.5^{+2.1}_{-1.5}$	4	
PhaseII-Coax2	23.1	3.6(1)	0.48(4)	$0.6^{+0.4}_{-0.3}$	3	BI * 100 kg yr * FWI
PhaseII-BEGe	30.8	3.0(1)	0.60(2)	$0.6^{+0.4}_{-0.3}$	5	\rightarrow 'background -free

Comparison to other experiments

				limit	sensitivity		
Experiment	Ref	Isotope	${\cal E}$	$\mathcal{L}(T_{1/2})$	$\mathcal{S}(\mathrm{T}_{1/2})$	m_{etaeta} using sensitivity	
			kg∙yr	$10^{25}\mathrm{yr}$	$10^{25} \mathrm{yr}$	meV	
GERDA		⁷⁶ Ge	82.4	9	11	112 - 228	
Majorana	(22)	⁷⁶ Ge	26.0	2.7	4.8	169 - 346	
CUPID	(23)	⁸² Se	1.83	0.24	0.23	1165-2398	
CUORE	(24)	¹³⁰ Te	24.0	1.5	0.7	162 - 757	
KamLAND-Zen	(25)	¹³⁶ Xe	593.5	10.7	5.6	76 - 234	
EXO-200	(26)	¹³⁶ Xe	177.6	1.8	3.7	93 - 287	
Combined						65 - 158	

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

- $G^{0\nu}$ = phase space factor
- $M^{0\nu}$ = nuclear matrix element

 m_e = electron mass

numbers without g_A quenching variation in $m_{_{BB}}$ from spread $M^{_{0v}}$ calc.

GERDA 2018 upgrade

Goals: 1) more enriched Ge detectors – new type Inverted Coax

5x ~2 kg detectors (average BEGe ~700 g)
with point contact like BEGe
→ similar pulse shape performance
NIM A 891 (2018) 106

NIMA 665 (2011) 25

GERDA upgrade(2)

Goal: 2) replace detector readout cables with radiopurer ones
3) replace fiber shroud – more fibers and around center string (→ more light detected)

New LAr light readout

correlation of hits in outer and central fibers for ⁴²K line

additional rejection of events when outer fibers see no light

GERDA upgrade(3)

Goal: 4) improve electronics – larger drain current & lower parasitic capacitance & repair

entire operation lasted ~5 weeks in April/May + 1 week in July

alpha background similar to before upgrade work \rightarrow we did not contaminate detectors

GERDA collaboration

LEGEND-200

Idea: background in GERDA from 'close sources' like

²²⁸Th/²²⁶Ra in cables ..., ⁴²K = daughter of ⁴²Ar, α on detector surface

 \rightarrow can be reduced by purer materials & better LAr veto & better electronics

 \rightarrow reduce background and increase mass

→ remain "background-free" & reach 10²⁷ yr half-life sensitivity

= concept of LEGEND-200 using the current GERDA infrastructure

LEGEND-200 history:

- first presented in April 2015 at LNGS scientific committee meeting (GERDA-200)
- LEGEND collaboration formed in October 2016, first stage = 200 kg at LNGS
- proposal March 2018 at LNGS accepted in June
- now: ~90% funded
- construction started, ~60 kg enriched Ge delivered, ~65 kg ordered, more next year
- goal: start data taking middle 2021

LEGEND collaboration

Univ. New Mexico L'Aguila Univ. and INFN Gran Sasso Science Inst. Lab. Naz. Gran Sasso Univ. Texas Tsinghua Univ. Lawrence Berkeley Natl. Lab. Leibniz Inst. Crystal Growth Comenius Univ. Lab. Naz. Sud Univ. of North Carolina Sichuan Univ. Univ. of South Carolina Jagiellonian Univ. Banaras Hindu Univ. Univ. of Dortmund Tech. Univ. – Dresden Joint Inst. Nucl. Res. Inst. Nucl. Res. Russian Acad. Sci.

Joint Res. Centre, Geel Chalmers Univ. Tech. Max Planck Inst., Heidelberg Dokuz Eylul Univ. Queens Univ. Univ. Tennessee Argonne Natl. lab. Univ. Liverpool Univ. College London Los Alamos Natl. Lab.

Lund Univ. INFN Milano Bicocca Milano Univ. and Milano INFN Natl. Res. Center Kurchatov Inst. Lab. for Exper. Nucl. Phy. MEPhI Max Planck Inst., Munich Tech. Univ. Munich Oak Ridge Natl. Lab. Padova Univ. and Padova INFN Czech Tech. Univ. Prague Princeton Univ. North Carolina State Univ. South Dakota School Mines Tech. Univ. Washington Academia Sinica Univ. Tuebingen Univ. South Dakota Univ. Zurich

L200 background simulation

~5 x 10⁻⁵ cnt/(keV kg yr) after pulse shape

LEGEND-1000 goal

for inverted neutrino mass hierarchy need to reach ~17 meV for mbb → half-life sensitivity beyond 10²⁸ yr for ⁷⁶Ge need background <3 x 10⁻⁵ cnt/(keV kg yr) & 1000 kg enriched Ge detectors = LEGEND-1000 goal

10²⁸ yr for 20 meV effective mass
0.6 ⁷⁶Ge decays per t*yr exposure
0.3 ¹³⁶Xe decays per t*yr exposure (before enrichment fraction & cuts)
→ background free conditions required

Summary

- GERDA is performing well, background ~ 0.6 cnt/(keV t yr) with FWHM ~3 keV
 → lowest background if normalized to resolution
- $T_{1/2}$ sensitivity reached 1.1 x 10²⁶ yr last spring
- upgrade work finished, back to data taking, background further reduced ?
- future = LEGEND-200 @ LNGS, construction ongoing
- more distant program = LEGEND-1000