MCORD

MPD Cosmic Ray Detector for NICA

by Polish consortium NICA-PL

Dr Bielewicz (NCBJ-Swierk, JINR) et al.

Outline

1. NICA colider

2. Cosmic Ray Detector – Goals

3. Main tasks and schedule

4. Design, modeling proposition

5. Conclusion

NICA - Nuclotron Ion Collider fAcility BM@N - Baryonic Matter at Nuclotron MPD - Multi-Purpose Detector NCORD - MPD Cosmic Ray Detector

1. NICA complex

Light lons <u>Ion source and Linac LU-20</u> <u>Nuclotron</u> <u>BM@N (Detector)</u> MPD (Detector) Heavy lons Ion sourse (KRION-6T) Heavy Ion Linac (HILac) Booster Nuclotron BM@N (Detector) MPD (Detector)

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK M.Bielewicz, 29.XI.2018 LHEP Division

seminar

1. NICA complex

- FD Forward detec
 - Superconductor solenoid (SC Coil)
 - inner detector (IT)
 - straw-tube tracker (ECT)
 - Time-projection chamber (TPC)
- Time-of-flight system (TOF)
- Electromagnetic calorimeter (EMC - ECal)
- Zero degree calorimeter (ZDC).

nica.jinr.ru/video/general_compressed.mp4

M.Bielewicz, 29.XI.2018 LHEP Division

seminar

5

2. Cosmic Ray Detector – Goals

PRIMARY PARTICLE

GROUND LEVEL

Cosmic ray air shower created by a 1TeV proton hitting the atmosphere 20 km above the Earth. The shower was simulated using the <u>AIRES</u> package.

2. Cosmic Ray Detector – Goals examples from other experiments

ALICE Exp. ACORDE 55 m underground thr. 16 GeV 2010-2013 y

ALEPH Exp. 140 m under. (thr. 70 GeV) (1997-99y)

Astroparticle Physics

www.elsevier.com/locate/astrona

Astroparticle Physics 19 (2003) 513-523

Cosmic multi-muon events observed in the underground CERN-LEP tunnel with the ALEPH experiment

V. Avati ^{a,*}, L. Dick ^{a,1}, K. Eggert ^a, J. Ström ^{a,2}, H. Wachsmuth ^{a,3}, S. Schmeling ^b, T. Ziegler ^b, A. Brühl ^c, C. Grupen ^c

> ^a European Laboratory for Particle Physics (CERN), Geneva, Switzerland ^b Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany ^c University of Siegen, Siegen, Germany

Received 26 July 2002; received in revised form 27 October 2002; accepted 26 November 2002

DELPHI Exp. 100 m under. (thr. 52 GeV) (99-2000y)

Available online at www.sciencedirect.com

Astroparticle Physics

www.cisevier.com/ocate/astrop

Study of multi-muon bundles in cosmic ray showers detected with the DELPHI detector at LEP

DELPHI Collaboration

J. Abdallah ^z, P. Abreu ^w, W. Adam ^{bc}, P. Adzic ¹, T. Albrecht ^r, R. Alemany-Fernandez ⁱ, T. Allmendinger ^r, P.P. Allport ^x, U. Amaldi ^{ad}, N. Amapane ^{av}, S. Amato ^{az}, E. Anashkin ^{ak}, A. Andreazza ^{ac}, S. Andringa ^w, N. Anjos ^w, P. Antilogus ^z, W-D. Apel^r, Y. Arnoud ^o, S. Ask ^{aa}, B. Asman ^{au}, A. Augustinus ⁱ, P. Baillon ⁱ, A. Ballestrero ^{aw}, P. Bambade ^u, P. Detkin ^{ab}, D. Berkin ^{bb}, A. Berken ^{bb}, A. Berken

M Rielewicz 29 XI 2018 | HEP Division seminar

2.Cosmic Ray Detector – Goals

- a) Trigger (for testing or calibration)
 testing before completion of MPD
 (testing of TOF, ECAL modules and TPC)
 calibration before experimental session
- a) Veto (normal mode track and time window recognition)
 Mainly for TPC and eCAL

Additionally

c) Astrophysics (muon shower and bundles)

 unique for horizontal events
 Working in cooperation with TPC

 DECOR exp. 2002-2003y (near horizontal observation

 (60-90 deg. angular range) - 1-10 PeV primary

3. Main tasks and schedule

I. Conceptual Design (9-12 months)

(Preliminary Technical and Electronic Design, Market Research, Literature Studies, Cost Estimates, TPC and TOF requirements)

II. Module Optimization (9-15 months)

(Scintillator, Power Supply, Front-End and Analog electronics characterization; Detector response, Cosmic-ray and MPD spectra simulation, Veto response, Integration)

- III. Demonstrator constr. (2-4 ready to use modules) (10-20 months) (Demo. detailed design, Procurement of Modules, Lab. Tests, Installation in MPD
- **IV.Final Detector constr.** (procurement of all modules , test installation and integration –12 months)

3. Main tasks and schedule

FMAMJuJASiCNDJ;FMAMJuJASiCNDJaIM;AMJuJASiCNDJ;FMAMJuJASiCNDJ;FMApr 29, 2022

		Milestone 1 Milestone 2 Milestone 2
_	Preliminary Technical Design	
eptua sign	Preliminary Electronic Design	01.04.2019 01.04.2020 01.04.2021 01.04.2022
	TPC and TOF requirements	
Jc.	Market research	
ō l	Literature Studies	
0	Cost Estimates	
-	Scintilator characterization	
ior	SiPM characterization	
at	(PW-NCBJ) Front-End Characterization	
nii	(PW-NCBJ) Power supply and temperature compensation	
otir	(PW) Digital electronic characterization	
ő	(NCBJ) Detector response simulation	
alle	(UJK) Cosmic-ray simulation	
npc	(Wrocław) MPD detectors spectra simulation	
ž	Veto response and background subtraction	Milestone 1
	Integration	01.04.2019
r. str	Detail Design of MCORD demonstartor	
on Cor	Procurement of modules for MCORD demonstrator	
em cor at	MCORD demonstrator laboratory test	
ă	MCORD demonstrator instalation at MPD	
or	Detail Design of MCORD	
r. ect	Procurement of modules for MCORD	
et(1st	MCORD laboratory tests	
al d coi	MCORD instalation at MPD	01.04.2020
ina		Milestone 4
ш.	N 411	01.04.2022
<u> </u>	Milestones raports	Milestone 3
the	Administration	
õ	Documentation	
	Operational use	

Conceptual Design and Module Opti.

- 1. Measurement of cosmic irradiation -Azimuthal and horizontal distribution
- 2. Angular influence of the building (concrete walls and ceiling)
- 3. Testing of scintillator shape (length, width, thickness) and scintillation response to ionizing radiation
- 4. Size and number of optical elements
- 5. Numerical calculation simulation (MCNPX, GEANT4 and CORSIKA, Showersim)

- Uniplast (Russia)
- Amcrys-H (Ukraine)
- Saint-Gobain (FR)
- Scionix (Holland)
- Nuvia (Czech)

Cooperation with SiPM vendors:

- Hamamatsu (Japan)
- AdvanSiD (Italy),
- Ketek (Germany),
- SensL (Ireland)
- Wide range of sizes: 1×1 mm² to 51×51 mm²

Conceptual Design and Module Opti. - measurements

Conceptual Design and Module Opti. - simulations

The first MCNPX simulation of muon energy deposition in plastic scintillator for NICA Energy spectrum reconstruction

- Cylindrical plastic scintillator
 Ø20 × 2.5 cm³ the same
 used for experiment at NCBJ
 - The maximum energy deposition centroid is around 4 MeV - reasonable result, assuming 2 MeV/cm dE/dx energy loss for muons in organic scintillator. Light generation due to ionization in plastic scintillator will be implemented in the near future.

Geometry used (40000 tracks)

Energy deposition spectra of 2 GeV monoenergetic muons

CORSIKA simulation of Cosmic Showers

One surface on full circumference

MCORD at MPD scheme Basic vaiant

One surface on full circrumference

4700

MCORD at MPD scheme

One surface on full circumference + additional surface on the top ver.1

M.Bielewicz, 29.XI.2018 LHEP Division seminar

One surface on full circumference + additional surface on the top ver.2

M.Bielewicz, 29.XI.2018 LHEP Division seminar

Module of detectors Number of detectors: 18 Dimensions of module: 730x90x4700 Weight of module: 150kg Detectors mounted to steel frame. Steel frame built with square profiles Frame mounted to MPD by screws. 19 1200

THE MUON DETECTOR SCHEME OF ANALOG SIGNAL PATH

Legend: S (violet) – plastic scintillator, (blue) – SiPM, P (red) – power supply with temperature compensation circuit, T (brown) – temperature sensor, A (green) – amplifier, D (yellow) – MicroTCA system with ADC boards, C (orange) – Analog Front End Module.

M.Bielewicz, 29.XI.2018 LHEP Division seminar

4. Design, modeling variants – FIBER?

<u>OPTION 1</u> Scintillator: length: width:	PVT or PS plastic <mark>(no fibers)</mark> 150 cm 10 cm				H
thickness:	2.5 cm	no fibers	2 side fibers	2 up fibers	3 up fibers

Light Yield estimation

Muon dE/dx = 2 MeV / ($g \cdot cm^2$) - light production by one particle (muon)

Muon Energy Deposition		Scinti. Light Yield (LY)	Muon LY			
~5 MeV		×~8000 ph/MeV	~40000 ph			
Lig LY	Light collection eff.:~20% (?)Attenuation length (λ): ~75 cmLight atten.:LY/[2exp(x/ λ)]LY _{mid} :LY × 0.2 / (2e) ≈ 7000 phLY _{end} :LY × 0.2 / (2e ²) ≈ 2500 ph					
Photodetector: SiPM size: 25×25 mm² (¼ scintilators end area) Dark Count Rate (DCR): ~50 Mcps (@ 0.5 phe) ~50 Mcps (@ 0.5 phe) DCR @ 5 phe (theshold level): ~10 kcps						
	Light Yield (LY)	Photodetector QE: ~25	5%Photoelectron Yield (PHE)			
		Relative area: 25%	%			
	~7000 ph	×25% ×25%	~500 phe			
	~2500 ph	×25% ×25%	~150 phe			

4. Design, modeling variants – FIBER?

OPTION 2 scintillator: PVT or PS plastic + WLS (fibers) (fi:1 mm) Image: fibers of the stimation of the stimatis and the stimation of the stimation of the stimatis an						
	Muon Energy Deposit	Scinti. Light Yield (LY)	N	/luon LY		
	~2 MeV	×~8000 ph/MeV	~	16000 ph		
Light collection eff.: ~10% (?) Atten. length (λ): ~350 cm Light atten.: LY/[2exp(x/ λ)] LY _{mid} : LY × 0.1 / [2exp(75/350)] ≈ 600 ph LY _{end} : LY × 0.1 / [2exp(150/350)] ≈ 500 ph photodetector: SiPM size: 1 × 1 mm ² (100% fiber end area) dark count rate (DCR): ~0.5 Mcps (@ 0.5 phe)						
DCR @ 3 phe (less threshold level) : ~10 kcps						
	Light Yield (LY)	Photodetector C	QE: ~25%	Photoelect	tron Yield (Pł	IE)
		Relative area: 1	.00%			
	~600 ph	×25% ×100%		~150 phe		
	~500 ph	×25% ×100%		~120 phe		

4. Design, modeling variants – FIBER?

Size estimation	Detector MCORD
Diameter:	7 m
Length:	4.5 m
Circumference:	22 m
No. of scintillators:	660 pcs
No. of SiPM:	1320 pcs
No. of mTCA:	4 crates

False trigger rate (FTR) estimation

SiPM-SiPM coinc_gate: 20 ns (two ends of a one scintillator) scintillator trigger_gate: 100 ns (two scintillators on MCORD cilinder) cosmic muon rate: <150 cps/m2 DCR (dark count rate)

PVT or PS plastic	(No fiber)	PVT or PS plastic + WLS	
DCR (@ 5 p.e.)	~10 kcps	DCR (@ 3 p.e.):	~10 kcps
noise-noise FTR:	<0.1 cps (8,67xE-2)	noise-noise FTR:	<0.1 cps
noise-cosmic FTR:	<0.1 cps (7,81xE-2)	noise-cosmic FTR:	<0.1 cps

THE MUON DETECTOR SCHEME OF DIGITAL SIGNAL PATH

uTCA based modular muon trigger

MicroTCA (MTCA) configuration

- Standard MTCA crate (14U) (cable fi1,5cm 24 channels +8) (additional cable for 5V and 40V power)
- Crate number depends on channel count and sampling speed
 At 250MS/s: 192 channels / crate
 At 125MS/s: 384 channels / crate (16 cables)
 At 80MS/s: 576 channels / crate
 At 50MS/s: 768 channels / crate

Analog Front-End module

FPGA mezzanine card (FMC)

AMC FMC carrier board

MTCA Carrier Hub

For several MTCAs one main MCH concentrate data from slaves MHCs to generate final muon trigger

5. Team

30 people Including 18 scientists (professors and doctors) 12 engineers from 3 universities and 2 science institutes

With knowledge and experience in digital and analog electronics, scintillators and photodetectors, nuclear and astrophysics, data acquisition and analysis, simulation and experiments.

Our group is a member of Polish consortium NICA-PL

5. Conclusions

- Cosmic ray detector is necessary for good calibration of TPC, TOF and ECAL, MPD detectors before completion of MPD.
- 2. Cosmic ray detector is helpful for better calibration of TPC TOF, before each experimental session.
- 3. Additionally MCORD can be use for astrophysics observations similar to past colider experiments. In our case, especially for investigations of near horizontal muon bundles (research of main trivial mechanism of multi-muon event generation (EAS muons).
- 4. Our team has a realistic plan and is capable of building this detector.
- 5. Projected cosmic ray detector will be designed to have required time resolution and position accuracy

Our group is a member of Polish consortium NICA-PL

M.Bielewicz, 29.XI.2018 LHEP Division seminar

Polish consortium NICA-PL

Thank You for Attention

