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Formulation of the problems and the general set up

The main objective

We are interested in phase space representations for finite dimensional
quantum systems

The goal:

1 Is it possible to describe the whole family of the WF W%(Ω|ν) over
the classical phase space (Ω) for a generic N-level quantum system
with density matrix % ? (+)

2 What’s the nature of negative values of quasiprobability distribution
functions? (?)

3 Can the non-classicality of a states be described by the negative
values of the Wigner function

4 · · ·
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Formulation of the problems and the general set up Standard form of the Wigner function

The standard form of the Wigner function

For a given state, describing by the density operator %, the Wigner
function W (q,p) defined on a classical 2n-dimensional phase space
spanned by the canonical coordinates q and momentum p reads

W (q,p) :=

∫
dnze

ı
~ zp〈q +

z

2
|%| q − z

2
〉 .

QPD’s

Quasi-Probabilty Distributions – “quantum analogue” of the statistical
distribution on the phase space of a classical system

Representation for W via displacement operator D

W = Tr
[
%DΠD†

]
where D and Π are the displacement and parity operators respectively.
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Formulation of the problems and the general set up The Stratonovich-Weyl correspondence

Symbols and Quasi probability distributions

For any operator A on the Hilbert space H of quantum system one
can define a family of functions FA(Ω; ν) onto the phase space Ω.
Here, ν labels the parameters fixing the function.

When the operator A represents the density matrix, A = %, the
corresponding phase-space functions F%(Ω; ν) := P(Ω; ν) are named
as Quasiprobability Distributions.

The Stratonovich-Weyl correspondence

The physically motivated properties of P(Ω; ν) were formulated by
R.L.Stratonovich more than sixty years ago (1955) and are usually referred
to as the Stratonovich-Weyl correspondence
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Formulation of the problems and the general set up The Stratonovich-Weyl correspondence

The Stratonovich-Weyl Correspondence

Clauses of SW correspondence:

Mapping • For a density matrix % the Wigner function Wρ on the classical
phase-space (Ω) is given by the map:

Wρ(Ω) = tr (ρ∆(Ω))

defined by the Hermitian kernel ∆(Ω) = ∆(Ω)† , with a unit norm∫
Ω

dΩ ∆(Ω) = 1

Reconstruction • The state ρ can be reconstructed as

ρ =

∫
Ω

dΩ ∆(Ω)Wρ(Ω) .

Covariance • The unitary symmetry ρ′ = U(α)ρU†(α) induces the kernel
transformation: ∆(Ω′) = U(α)†∆(Ω)U(α)
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Formulation of the problems and the general set up The Stratonovich-Weyl correspondence

The Wigner distribution kernel

The Wigner distribution W%(Ω) over a phase space parametrized by the
set Ω is determined by the kernel ∆(Ω|ν):

W (ν)
% (ϑ1, ϑ2, . . . , ϑdF) = tr [%∆(Ω|ν)] = tr

[
%XP(N)(ν)X †

]
,

Here P(ν) = diag||π1, π2, . . . , πN ||.

In accordance with the SU(n)-covariance of kernel we identify:

dF - parameters of unitary matrix U(θ) ∈ SU(N) with the coordinates of
classical phase-space, Ω = (θ1, . . . θdF ) .
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Constructing the kernel for Wigner distribution Master equations

Deriving the Master equations for ∆(Ω)

Step 1 • The SU(N) symmetry allows to define the “reconstruction”
integral for % over the SU(N) group with the Haar measure:

% = Z−1
N

∫
SU(N)

dµSU(N) ∆(ΩN) tr [%∆(ΩN)] .

Step 2 • Substitute decomposition ∆ = U(θ)PU†(θ) into the
identity, after fixing

π1 ≥ π2 ≥ · · · ≥ πN .
and evaluate the integral using the Weingarten formula:∫

dµUi1j1Ui2j2Ūk1l1Ūk2l2 =
1

N2 − 1
(δi1k1δi2k2δj1l1δj2l2 + δi1k2δi2k1δj1l2δj2l1)

− 1

N(N2 − 1)
(δi1k1δi2k2δj1l2δj2l1 + δi1k2δi2k1δj1l1δj2l2) .
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Constructing the kernel for Wigner distribution Master equations

Deriving the Master equations for ∆(Ω)

(tr[P])2 = ZNN , tr[P2] = ZNN
2 .

Step 3 • Fixing ZN : Standardization

Z−1
N

∫
dµSU(N)W

(ν)
A (ΩN) = tr[A] ,

is satisfied iff tr [P] = ZN N, resulting in ZN = 1
N and

master equations

tr [∆(ΩN)] = 1 , tr[∆(ΩN)2] = N .
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Constructing the kernel for Wigner distribution Master equations

In µ1, µ2, . . . µN2−1 orthonormal basis of su(N)

∆(ΩN |ν) =
1

N
U(ΩN)

[
I +

√
N(N2 − 1)

2

∑
λ∈H

µs(ν)λs

]
U†(ΩN) ,

with coefficients µs(ν) defined on an unit sphere SN−2(1) .

The Wigner function

for N dimensional quantum system with N − 1 dimensional Bloch vector ξ

W
(ν)
ξ (θ1, θ2, . . . , θd) =

1

N

[
1 +

N2 − 1√
N + 1

(n, ξ)

]
,

n = µ1n(1) + µ2n(2) + · · ·+ µN−1n(N−1) ,

n(s)
µ =

1

2
tr
(
UλsU

†λµ

)
, µ = 1, 2, . . . ,N2 − 1 .
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Qubit Qubit kernel and the Wigner function

Qubit kernel and the Wigner function

For a 2-level system the uniquely defined kernel is P(2) = 1
2diag ||1 +

√
3, 1−

√
3|| .

Taking into account that X = exp
(
i α

2 σ3

)
exp

(
i β

2 σ2

)
exp

(
−i α

2 σ3

)
, for a

qubit parametrized in a standard way by a Bloch vector
r(ψ, φ) = (r sinψ cosφ, r sinφ sinφ, r cosψ) as % = 1

2 (I + r · σ) ,

Wr (α, β) = tr
[
%X P(2) X †

]
=

1

2
−
√

3

2
(r(−ψ,−φ),n) .
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Probability of negativity as a measure of non-classicality of space of
states

Probabolity of negativity

The normalized measure Mρ = 1
VolΩdF

M {Ω |Wρ(Ω) < 0} of the unified

domain where the Wigner function acquires negative values is a measure
of non-classicality (e.g. exhibition of pure quantum correlations).

”How much” non-classicality may be found in uniformly covered set of the
states of an N-level system?

P =
1

Vol(Space of states)

∫
Mρ dVH−S(ρ).

Claim

The limit of total non-classicality limN→∞ P = 1
2erfc

(
1√
2

)
= 0.15866·,

and doesn’t depend on the choice of Stratonovich-Weeyl kernel.
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Conclusions

1 It is shown that the kernel ∆(Ω) satisfies two algebraic “master
equations”;

2 An ambiguity in the solution to those “master equations” has been
analyzed and the moduli space of the Wigner quasiprobability
distribution was determined;

3 The positivity of the WF has been studied and the probabilistic
characteristics of negativity of the WF were found.

4 The total non-classicality for infinite level system has been
found.
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Thank you!
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